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Abstract. Nowadays, online judges are extensively used for automati-
cally grading student code. However, they grade code by only counting
the number of passed test cases, which is not fair for assessing the over-
all quality of a code snippet. On the other hand, existing studies have
used machine learning techniques for code grading. However, they usu-
ally require large amounts of labeled code to enable supervised learning
and heavily rely on feature engineering. In this work, we design Sim-
Grader, a code grading system that grades student code based on the
measurement of similarity to the “good” code, and thus save the effort for
code labeling. We extract three types of features to capture the overall
quality of a code snippet, and design specific methods to enhance the
feature discrimination, which facilitates the similarity measurement. We
conduct extensive experiments to show the superiority of SimGrader
over existing methods and justify the effect of the its system compo-
nents. We deploy SimGrader to grade the student code submitted in
an introductory programming course.

Keywords: Code grading · Discriminative feature · Contrastive learning
· Tree edit distance

1 Introduction

Online judge (OJ) systems [23] have been extensively used in programming ed-
ucation [21,27,7,22,10]. The systems can automatically assess the correctness
of student code by executing them with a set of pre-defined test cases, which
greatly reduces teachers’ burden of grading student code. However, for students,
grading their code by simply counting the number of passed test cases is less
informative and sometimes unfair with respect to the quality of the code. For
instance, a code snippet passing all test cases may have awful code style or high
time/space complexity, whereas a nearly correct code snippet may fail all test
cases only due to one variable misuse. A good programming education should
encourage students not only to write correct programs, but also to write concise
programs with good style. As such, a fair code grading system should consider
as many of the above factors as possible and give students a composite score
to guide them in optimizing their code. A potential solution is to extract a set
of code features pertaining to the grading factors and train machine learning
models based on the features to predict the code grade.
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Several related studies have investigated automatic code grading with ma-
chine learning techniques [19,18,20,14]. However, there exist following issues in
these methods. First, they mainly construct the semantic features reflecting the
functionality of a code snippet for grade prediction, e.g., expression features and
data-dependency features [19,20], and rarely consider the features related to code
style such as variable naming and indent use. These style features are actually
crucial for assessing the quality of source code in terms of readability and ease
of maintenance. Second, most existing methods manually construct the seman-
tic features of source code, e.g., by counting the occurrences of key expressions
and tokens [18,20], or calculating the number of specific nodes in the abstract
syntax tree of a code snippet [14]. Manual feature engineering is ad-hoc for each
programming question and may introduce noise into the features. Last, existing
methods build supervised grading models and therefore require large amounts
of labeled source code [19,18,20,16,14,11]. This not only imposes a lot of human
labors but also leads to the underuse of massive unlabeled source code in the OJ
system.

In this work, we implement the SimGrader system, which grades student
code based on the measurement of similarity to the “good” code and therefore
avoids the overhead of labeling the student code. For each programming question,
“good” code is defined as a concise code snippet with good style to solve the
question. Compared to labeling the student code, preparing the good code is
much cheaper because the number of questions in an OJ system is often limited
and we may find the good code from correct student submissions. For newly
added questions, standard code snippets have to be composed for generating the
test cases, which can be used as the good code. Note that each programming
question may have multiple good code snippets. Then, we can generate the grade
for a student code snippet based on its similarity (or distance) to the nearest
good code. This is motivated by the human grading process where the teachers
often compare a student code snippet with the nearest standard solution and
give the grade based on the defects in the student code.

To implement SimGrader, at the core of the system is extracting the dis-
criminative feature vector of student code that is used for code similarity mea-
surement. We propose to extract the following three types of features. The first
type are the static features such as the number of blank lines, improper spaces
and indents, and the ratio of improperly named variables. This type of features
mainly reflect whether a code snippet is concise and has good style. The second
type of features are the runtime statistics such as execution time, memory usage
and the percentage of passed test cases. This type of features mainly capture
the efficiency and correctness of a code snippet. The last type are the semantic
features of a code snippet, which reflect the functionality of a code snippet and
thus are important for evaluating whether the code complies with the require-
ments of the programming question. Inspired by the recent advances in program
representation learning [12,1,25,5], we propose to learn the features from massive
student code using deep learning techniques rather than manually constructing
them as in previous studies. To improve the discrimination of semantic features,
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we further design a contrastive learning task followed by a fine-tuning task to
obtain the final semantic feature vectors. The above three types of features are
concatenated to form the complete feature vector. Finally, we calculate the sim-
ilarity between the complete feature vector of a student code snippet and that
of the nearest good code, based on which the code is graded. We deploy Sim-
Grader in the OJ system used for an introductory programming course and
demonstrate how we use it to grade student code.

Our contribution is summarized as follows:

– We design SimGrader, a system that grades student code based on the mea-
surement of similarity to the “good” code and therefore avoids the expensive
code labeling overhead. For similarity measurement, we propose to extract
three types of code features including the static feature, runtime feature and
semantic feature, which capture not only the functional information of a
code snippet but also the conciseness and the style information. Moreover,
the semantic feature is automatically learned from massive student code,
avoiding the ad-hoc feature engineering and possible human-injected noise
(See Section 3.1).

– To improve the discrimination of semantic features, we design a contrastive
learning task to train the semantic feature vectors, so that the vectors of
more similar code snippets are closer to each other. We further fine-tune
the semantic feature vectors by predicting the closeness of each pair of code
snippets, where the closeness is calculated based on the tree edit distance
between the abstract syntax trees (ASTs) of the snippets (See Section 3.2).

– We conduct extensive experiments to show the effectiveness of SimGrader.
We compare it with existing grading systems using the similarity measure-
ment strategy as well as by training supervised prediction models with a
small labeled dataset. We also conduct ablation studies to show the effect of
the contrastive learning and fine-tuning sub-steps. The experimental results
not only show the superiority of the extracted features but also justify the
component design of SimGrader (See Section 4). We deploy SimGrader
in an OJ system used for an introductory programming course and demon-
strate some use cases (See Section 5).

2 Related Work

Existing studies mainly design supervised learning models for automatic code
grading and heavily rely on feature engineering. For instance, Srikant and Aggar-
wal [19] construct six types of code semantic features by counting corresponding
patterns. The patterns are extracted from the token sequence, the ASTs, the
control flow graphs (CFG) and data dependency graphs (DDG) of a code snip-
pet, and depend on each programming question. Based on the features, they
train three regression models to predict code grade, including ridge, SVM and
random forests. Later, Singh et al. [18] extend this work and propose a ques-
tion independent method for code grading. They design a transformation which
would transform a question specific feature matrix pertaining to a set of code
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snippets into a structure invariant feature matrix. This matrix is further used as
input to learn a question independent grading model. They use the similar fea-
ture engineering method with [19] and still need to label large amounts of code
for learning the transformation. A related study [20] attempts to grade uncom-
pilable code. Their focus is how to use feature engineering to extract semantic
features from uncompilable code snippets.

Recent studies develop deep learning solutions for code grading. For instance,
Orr and Russell [14] use feed-forward neural networks to predict code grade.
However, they still use manually constructed features and need to label the code
for supervised learning. Qin et al. [16] adopt a Bi-GRU network to learn from
the intermediate code representation obtained using LLVM. They design a selec-
tion function to pick important features from the intermediate representation.
The model is trained with labeled code snippets. A related but different study
is conducted by Johnson-Yu et al. [9], where they design a model to find the un-
marked code submissions that are mostly similar to the submissions that have
been marked by a grader. Then they assign the unmarked submissions to the
graders based on the similarity distribution, so that the efficiency of manual
grading can be improved.

3 The SimGrader System

Figure 1 shows the overview of the SimGrader system consisting of three main
steps. In the first step as shown in Figure 1(a), three types of features are ex-
tracted for each code snippet, including static features, runtime features and
semantic features. Section 3.1 describes the details of feature extraction. In the
second step as shown in Figure 1(b), two sub-steps including contrastive learn-
ing and fune-tuning are designed to enhance the discrimination of the semantic
features. Section 3.2 describes the details of these two sub-steps. In the final step
as shown in Figure 1(c), the concatenation of the three types of features is used
to output the grading score for a code snippet based on similarity measurement
with the good code. Section 3.3 describes this strategy. In the experiments, we
also invite two experts to grade a small set of student code and show the results
of supervised learning using the dataset.

Fig. 1. Overview of the SimGrader system.
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3.1 Feature Extraction

Static Features We construct the static features by traversing the text and
the AST of a code snippet, without executing the code. The AST of a code
snippet is an tree-based abstract representation of the grammatical structure,
which is composed of semantic structure (internal) nodes and token (leaf) nodes.
Figure 2(a) shows a simple code snippet and Figure 2(b) shows the corresponding
AST. It can be observed that the leaf nodes correspond to the tokens in the code

int sum(int a, int b)
{

return a+b;
}

(a) Code Statements (b) Abstract Syntax Tree

Fig. 2. A Code Snippet and its AST.

text, and the internal nodes indicate the semantic structure of (i.e., relationship
between) the tokens. We use pycparser1 to obtain the ASTs of student code.
In addition, we also use static analysis tools such as cpplint2 and cppcheck3 to
obtain some of the features. The static features obtained by traversing the code
text and AST mainly capture the conciseness and style information of the code.
The details of the features are described as follows:

– Special lines: Count the number of comments and blank lines. The intuition
is that a code snippet with good style should have a certain number of
comments and few blank lines.

– Improper spaces and indents: Count the number of improperly used
spaces or indents (including too many or too few indents). We use cpplint
to calculate the numbers.

– Variables: Count the number of variables and the number of times each
variable is used. The intuition is that a concise code snippet should not have
too many unnecessary and repeatedly used variables.

– Variables naming: Calculate the ratio of properly named variables over all
variables, except the variables in the control statements. A properly named
variable can be a word, an abbreviation, or the combination of words and
abbreviations. Proper variable naming can enhance the readability and ease
of maintenance of code [8,15].

1 https://github.com/eliben/pycparser
2 https://github.com/cpplint
3 https://cppcheck.sourceforge.io/
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– Unused elements: Count the number of unused variables and non-executed
code lines. These elements commonly present in the code written by novice
students. We use Cppcheck to calculate the numbers.

– Cyclomatic complexity: Count the number of judgement nodes in an
AST. Common judgement nodes include ForStatement, WhileStatement, If-
Statement, BinaryOp of boolean logic, etc. Cyclomatic complexity measures
the complexity of code logic. For each programming question, a higher cy-
clomatic complexity indicates that the code is less concise and readable.

– Halstead metrics: Count the number of unique and total operators and
operands, and use them in the Halstead formulas to calculate the metrics.
These metrics mainly capture the static complexity of a code snippet.

Runtime Features The runtime features of the statistics obtained by execut-
ing student code with the test cases. The features capture the correctness and
efficiency of the code pertaining to a specific programming question, which are
described as follows:

– Test cases: Calculate the ratio of passed test cases over all test cases.
– Execution time: Calculate the maximum, average and minimum execution

time of all test cases. The feature captures the time efficiency of code.
– Memory usage: Calculate the maximum, average and minimum memory

usage of all test cases. The feature captures the space efficiency of code.

Semantic Features In previous studies [19,18,20], the semantic features per-
taining to the functionality of a code snippet are obtained with feature engineer-
ing. This strategy needs to construct ad-hoc features for each question and may
introduce noise into the features. A recent study [16] uses a Bi-GRU model [24]
to learn from the token sequence of source code and output a distributed vector
to represent the semantic features. However, learning from the token sequence
leads to a significant effort to learn the syntactic nature of source code from
scratch, which reduces the efficiency of learning the semantic features. Inspired
by recent studies in program representation learning [12,1,25,5], we choose to
learn the semantic features from the AST of a code snippet. The AST struc-
ture is shown to preserve the syntactic nature of a code snippet and therefore
significantly lower the learning effort of semantic features [3,2]. In the current
study, we experiment with two representative models, namely, TBCNN [12] and
ASTNN [25], respectively. TBCNN applies tree-based convolution kernels on an
AST to gather the information of child nodes into the parent nodes, and uses
dynamic pooling to aggregate the feature vectors of all nodes. The resulted vec-
tor is used to represent the entire code snippet. ASTNN splits an AST into a set
of subtrees corresponding to the statements in the code snippet. The subtrees
are organized into a sequence in accordance with the order of the corresponding
statements in the original code. Then it adopts a Bi-GRU network to encode
the sequence and uses max pooling to aggregate all hidden states to form the
semantic feature vector.
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3.2 Enhancing the Discrimination of Semantic Features

Since we grade student code based on the measurement of similarity to the good
code, the discrimination of the code feature is critical, i.e., the feature vectors
of similar code snippets should be close to each other and the feature vectors of
dissimilar code snippets should be far away from each other. To enhance feature
discrimination, we design two sub-steps after extracting the semantic features
for obtaining the final semantic feature vectors.

Contrastive Learning The first sub-step is to train more discriminative se-
mantic feature vectors using contrastive learning [6]. Contrastive learning repre-
sents a category of self-supervised learning methods whose optimization objective
is to simultaneously maximize the similarity among positive (close) data points
and minimize the similarity among negative (distant) data points. As such it
can be used to increase the discrimination of feature vectors. Our design of con-
trastive learning is as follows. For each code snippet in a random batch, we first
construct its positive counterpart based on small random transformation to the
source code. We adopt the method in [4] and transform the original source code
into a code snippet with equivalent semantic. The transformation has four types
including variable renaming, statement swapping, statement insertion and for-
while interchanging. Figure 3 shows an example of the transformations, where
Figure 3(a) is the original code snippet, and Figure 3(b)∼(e) show the trans-
formed elements in red for all the transformation types. Note that none of the
transformations changes the semantic of the original code snippet. For each code
snippet, we transform it with the four types and randomly choose a transformed
snippet as its positive counterpart during training.

int main(){

int number;

int sum = 0;

scanf("%d", &number);

while (number > 0){

if (number % 2 == 1)

sum += number;

scanf("%d", & number);

}

printf("%d", sum);

}

(a) Original Code (b) Variable Renaming (c) Statement Swapping (d) Statement Insertion (e) for-while Interchanging

int main(){

int x;

int sum = 0;

scanf("%d", &x);

while (x > 0){

if (x % 2 == 1)

sum += x;

scanf("%d", & x);

}

printf("%d", sum);

}

int main(){

int sum = 0;

int number;

scanf("%d", &number);

while (number > 0){

if (number % 2 == 1)

sum += number;

scanf("%d", & number);

}

printf("%d", sum);

}

int main(){

int number;

int sum = 0;

int count;

scanf("%d", &number);

while (number > 0){

if (number % 2 == 1)

sum += number;

scanf("%d", & number);

}

printf("%d", sum); }

int main(){

int number;

int sum = 0;

scanf("%d", &number);

for (; number > 0;){

if (number % 2 == 1)

sum += number;

scanf("%d", & number);

}

printf("%d", sum);

}

Fig. 3. An example of the code transformation.

The construction of the negative counterpart is relevant to the contrastive
loss used for optimization. We experiment with two types of loss functions in
the current study, namely, the InfoNCE loss [13] and the Triplet loss [17]. In the
former case, for each code snippet, we use all other code snippets in the same
batch as the negative counterparts. In the latter case, each code snippet is just
paired with one negative counterpart, selected as follows. We first use TBCNN
or ASTNN to obtain the encodings of the code snippets. Then for each snippet,
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we calculate the L2 distances between its encoding and all other encodings and
sort all the distances in either order. We pick the distance in the middle and
use the other snippet in the distance calculation as the negative counterpart, as
suggested in [17]. Denote by ci, posi and negi the ith code snippet in a batch,
the corresponding positive counterpart and negative counterpart, respectively.
For both types of contrastive loss, the objective function of contrastive learning
ci is depicted as follows:

Licon = − log
exp(

eci ·eposi
τ )

exp(
eci ·eposi

τ ) +
∑

negi∈batch
exp(

eci ·enegi

τ )
, (1)

where eci denotes the encoding of ci, · denotes the dot product and τ is the
temperature parameter. Note that for the Triplet loss, there is only one negi for
each ci and the

∑
symbol could be omitted.

Predicting Code Closeness Based on Tree Edit Distance The second
sub-step is to further fine-tune the feature vectors obtained in the contrastive
learning sub-step using a supervised prediction model. Remember that in con-
trastive learning, we form a random batch from the student code submitted to
all programming questions. As a result, for each code snippet, we equally treat
the negative counterparts of the same question and those of a different ques-
tion. Because the code snippets of the same question are semantically similar,
the resulted feature vectors of the same question are still very close to each
other. Therefore, we consider to further separate the feature vectors of the code
snippets submitted to the same question.

To this end, we train a supervised model to predict the closeness of each
pair of code snippets for the same question. We define the closeness of two code
snippets as the ratio of the tree edit distance [26] between their ASTs to the
number of nodes in the AST with more nodes. Once we obtain the closeness
between every pair of code snippets, we set a threshold 0.05 according to the
distribution. The pairs with a closeness below the threshold are labeled with 1
(close pairs), and the other pairs are labeled with 0 (non-close pairs). Note that
the labels are automatically calculated and do not require any manual labeling
effort. Then we train a three-layer fully-connected neural network to predict the
labels of the pairs. Each input is a pair of code feature vectors obtained from
the contrastive learning sub-step. Because most code pairs are non-close pairs,
we use focal loss as the loss function to mitigate the imbalanced distribution
problem. Denote by pi and yi the predicted probability and label of the ith code
pair. The focal loss is depicted as follows:

Lifoc =
{

−α(1− pi)γ log(pi), if yi = 1
−(1− α)pγi log(1− pi), if yi = 0,

(2)

where the α is weighting factor and the γ is the focusing parameter.
At inference time, the output layers of the contrastive learning model and the

fine-tuning model are discarded, and the remaining architectures are connected
to generate the semantic feature vector for each code snippet.
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3.3 Grading Student Code

The above three types of features are concatenated to form the complete feature
vector, where each type of feature vector is normalized in the range [0, 1] before
concatenation. When grading a code snippet, we first calculate the cosine simi-
larity between its feature vector and the nearest feature vector of a “good” code
snippet of the same programming question. Since the similarity score is between
-1 and 1, we convert it by adding 1 and then dividing 2 to obtain a score between
0 and 1. To show the grade to the student, we further multiply the score by 100
as the final grade. Denote by vs and vg the feature vector of the code snippet
and the nearest feature vector of a “good” snippet, respectively. The final grade
is calculated as:

Grade =
sim(vs, vg) + 1

2
× 100, (3)

where sim(vs, vg) = vTs vg/‖vs‖‖vg‖ is the cosine similarity between vs and vg.

4 Performance Evaluation

We conduct four experiments to determine the model settings, evaluate fea-
ture discrimination, evaluate the performance of similarity-based and learning-
based grading strategies, respectively. We implement SimGrader using Python
3.7.6 and Pytorch 1.7.0. All source code is available at https://github.com/
wangDxia/SimGrader.

4.1 The Datasets and Evaluation Metrics

Datasets We collect 46,949 compilable C code snippets from an OJ system used
for an introductory programming course in our university. They are submitted
by 146 fresh students in one semester to solve 479 programming questions. We
use all the code snippets for feature extraction, contrastive learning and grading.

For the fine-tuning sub-step that predicts code closeness, we extract 73 ques-
tions with more than 200 submissions and obtain in total 27,462 code snippets.
We form the code pairs for each question and obtain 219000 code pairs, where
41011 pairs are labeled with 1 (close pairs) and 177989 pairs are labeled with 0
(non-close pairs). We randomly divide the pairs with proportion 3:1:1 to form
the training, validation and testing set, respectively.

To verify the effectiveness of SimGrader, we construct a small dataset that
are labeled by experts. We randomly select 30 questions among the 73 questions
with more than 200 submissions, and randomly select 15 submissions for each
question. As such we obtain a small dataset with 450 code snippets. We invite
two teachers of C programming courses and ask them to independently grade
each code snippet on a scale between 1 and 5, which is depicted below. If the
two teachers give different grades to a snippet, we ask them to further discuss
and make an agreement on the final grade.

https://github.com/wangDxia/SimGrader
https://github.com/wangDxia/SimGrader
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– 5 - Correct and graceful: The code passes all test cases, and the style is
clean and clear. There are no redundant variables and code lines, and the
variable names are very standardized.

– 4 - Correct with some flaws: A correct implementation but often accom-
panied by poor style or complex solution.

– 3 - Nearly correct and neat: The code does not pass all test cases, but
the overall logic is the same as the correct solution, and the code style is
clean and clear.

– 2 - Incorrect and confusing: The code is incorrect and very different
from the correct solution. The code style is not good and the logic seems
confusing.

– 1 - Incorrect and awful: The code is incorrect and the code style is awful.

Evaluation Metrics We use multiple metrics to evaluate SimGrader. First,
we use the fine-tuning sub-step to determine the best settings for the semantic
feature extraction model (i.e., TBCNN or ASTNN) and the contrastive loss
(i.e., InfoNCE or Triplet loss). We choose the settings when the model has the
best prediction performance on the validation set. The evaluation metric is the
accuracy of code closeness prediction.

Second, to evaluate the discrimination of the feature vectors, we cluster the
vectors and use two internal metrics to assess the clustering results, namely,
Davies-Bouldin Index (DBI) and Silhouette Coefficient (SC). DBI finds for each
cluster the most similar cluster based on their diameters, and then computes the
average similarity over all the clusters. A smaller DBI value means the clusters
are less similar to each other, therefore indicating the vectors are more discrim-
inative. SC is a measure of how similar an object is to the objects within the
same cluster compared to the objects outside the cluster. A higher SC value
means each object is better matched to the objects inside the same cluster and
less matched to the objects outside the cluster, therefore indicating the vectors
are more discriminative.

Third, to evaluate the grading performance using similarity measurement,
we calculate the correlation between the grades produced by SimGrader and
the grades marked by the two experts, on the 450 labeled source code. The
used correlation metrics are the Pearson correlation coefficient (PCC) and the
Spearman’s rank correlation coefficient (SRCC). Furthermore, we use the 450
labeled source code to train and evaluate several supervised models, so that we
can compare with existing code grading systems. The evaluation metrics are
precision, recall and F1 score.

4.2 The Comparative Methods

We compare SimGrader with with three existing supervised learning methods.
The LASSO [18,20] method uses feature engineering and trains a LASSO regres-
sion model. The Ensemble [14] method trains an ensemble of feed-forward neu-
ral networks on the manually constructed features. The SCG_FBS[16] method
trains a Bi-GRU network using the intermediate representation of source code.
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4.3 The Hyperparameter Setting

In the contrastive learning sub-step, the output embedding size is set to 64 and
the temperature parameter τ is set to 0.1. When training, we set the batch size to
32, the learning rate to 0.001. We use Adamax for optimization. In the fine-tuning
sub-step, we set α in the focal loss to 0.25 and γ to 0.98. In the supervised models,
the Neural Network model has 4 layers, the number of GBDT’s estimators is set
to 150, and the SVM kernel is set to linear.

4.4 Experiment 1: Predicting Code Closeness

Table 1 shows the performance of predicting code closeness on the testing set in
the fine-tuning sub-step for different model settings. We observe that ASTNN
with InfoNCE contrastive learning yields the highest accuracy. In particular,
the ASTNN variants perform better than the TBCNN variants. This may be
because ASTNN uses the order information of the source code in addition to
the AST structural information. The InfoNCE variants perform better than the
Triplet variants, which may indicate using more negative counterparts improves
the discrimination of the feature vectors. All in all, we use the variant of ASTNN
with InfoNCE loss in the subsequent experiments.

Table 1. The performance of different settings for predicting code closeness.

Model TBCNN ASTNN
Variants InfoNCE Triplet InfoNCE Triplet
Accuracy 0.8265 0.8220 0.8551 0.8360

4.5 Experiment 2: Evaluating Feature Discrimination

After the fine-tuning sub-step, the three types of features are concatenated for
grading student code. Before we use them for grading, we evaluate their discrim-
ination since the property is critical for similarity measurement. We cluster the
27,462 code snippets of the 73 questions with more than 200 submissions and
use DBI and SC to evaluate the clustering performance. We use k-means and set
k = 73. We compare the results of SimGrader (Full) with the results obtained
using the feature vectors produced by the three comparative methods. Also, we
remove the contrastive learning (w/o CL) and fine-tuning (w/o FT) sub-step
from SimGrader, respectively, and evaluate the features produced by the re-
maining system. Note that the comparative methods have only a full model,
since they do not have a contrastive learning or fine-tuning step as ours. Table 2
shows the results. Remember that a lower DBI and a higher SC indicate the bet-
ter performance. We observe that SimGrader constantly performs much better
than existing methods for both metrics. Moreover, the clustering performance
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of SimGrader drops when either sub-step for enhancing feature discrimination
is removed. This shows the effect of these two sub-steps. Note that we need at
least one of the sub-steps to train the semantic features.

Table 2. The performance of clustering the code feature vectors.

Metrics DBI SC
Model Variants w/o CL w/o FT Full w/o CL w/o FT Full

Ensemble [14] - - 1.145 - - 0.257
SCG_FBS[16] - - 1.7718 - - 0.1644
LASSO [18] - - 0.4844 - - 0.5435
SimGrader 0.3243 0.3233 0.2948 0.7059 0.7058 0.7471

4.6 Experiment 3: Grading with Similarity Measurement

Our primary contribution is to grade student code based on the measurement of
similarity to the good code, so that we don’t need large amounts of labeled code
and may sufficiently use the massive unlabeled code. To evaluate the accuracy
of the grades, we calculate the correlation between the grades produced by Sim-
Grader and the grades marked by the two experts on the 450 code snippets.
Table 3 shows the results. We observe that SimGrader constantly performs
much better than existing methods for both correlation metrics. Note that for
both correlations, a value greater than 0.8 indicates strong correlation. The re-
sults indicate the grades produced by SimGrader are very reliable. Moreover,
the correlation drops when either contrastive learning or fune-tuning sub-step is
removed.

Table 3. The correlation between the grades marked by SimGrader and the experts.

Metrics PCC SRCC
Model Variants w/o CL w/o FT Full w/o CL w/o FT Full

Ensemble [14] - - 0.652 - - 0.645
SCG_FBS[16] - - 0.7518 - - 0.7363
LASSO [18] - - 0.8238 - - 0.8027
SimGrader 0.8701 0.8626 0.8723 0.8168 0.7867 0.8438

4.7 Experiment 4: Grading with Supervised Learning

Finally, we compare SimGrader with existing supervised learning solutions
using the 450 labeled code snippets. We feed the feature vectors produced by
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SimGrader into different supervised models and pick the best one for compar-
ison. For the comparative solutions, we also use the best settings reported in
the original papers [14,16,18]. Table 4 shows the results. We observe that GBDT
performs better than other models. For each model, we observe the performance
drop when either contrastive learning or fine-tuning sub-step is removed.

Table 4. Performance of different supervised models using code features extracted by
SimGrader.

Models w/o CL w/o FT Full
Precision Recall F-score Precision Recall F-score Precision Recall F-score

Neural Network 0.7334 0.7388 0.7329 0.7514 0.7455 0.7377 0.7548 0.7466 0.7408
SVM 0.7420 0.7311 0.7293 0.7446 0.7444 0.7415 0.7357 0.7311 0.7320

DecisionTree 0.6963 0.6888 0.6918 0.6649 0.6688 0.6620 0.7005 0.7044 0.7014
RandomForest 0.7936 0.7833 0.7840 0.7238 0.7333 0.7329 0.7843 0.7844 0.7747

GBDT 0.7970 0.7988 0.7918 0.7677 0.7733 0.7666 0.8197 0.8222 0.8194

We use GBDT (Full) to compare with existing supervised learning solutions.
Table 5 shows the results. We observe that SimGrader performs much bet-
ter than comparative methods, which indicates that the features extracted by
SimGrader can better capture the static, runtime and semantic property of
student code.

Table 5. Comparing SimGrader with existing supervised learning solutions.

Precision Recall F-score

SimGrader(GBDT) 0.8197 0.8222 0.8194
Ensemble [14] 0.5438 0.5511 0.5491
LASSO [18] 0.6285 0.6177 0.6094

SCG_FBS[16] 0.6048 0.5977 0.5827

5 Application: Using SimGrader in An OJ System

We deploy SimGrader in the online judge system used for an introductory C
programming course in our university. Originally, whenever a code snippet is
submitted for a programming question, the OJ executes it with the pre-defined
test cases and gives the feedback in one of the five main types: accepted, wrong
answer, time limit exceeded, memory limit exceeded, runtime error. After the
deployment of SimGrader, the OJ can in addition give out a grade score to
show the overall quality of the code. Figure 4 shows an example, where four
code snippets submitted to the same question are graded. The question is to
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read three integer values as the side lengths of a triangle and calculate the area
of the triangle using Heron’s formula.

Fig. 4. An example of four code snippets graded by SimGrader.

In the top-left corner, we observe a concise and correct code snippet and
SimGrader gives a grade score 99. In the top-right corner, the code snippet
is nearly correct except that it fails to convert the integer type into the double
type before division (line 9). As such it fails most of the test cases. However,
SimGrader finds it very close to the good code and gives a grade score 86.
In the bottom-left corner, although the code may pass some cases, it has severe
semantic errors. As such SimGrader only grades it as 81. Finally in the bottom-
right corner, although the code passes all test cases, SimGrader finds it not
concise enough and grades it as 88.

6 Conclusion and Future Work

We design a code grading system, SimGrader, to grade student code based
on the measurement of similarity to the good code. As such, we save the ex-
pensive overhead to label large amounts of student code required by existing
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methods. We extract the static features, runtime features and semantic features
to capture the overall quality of each code snippet. To enhance the discrimina-
tion of the features, we design the contrastive learning and fine-tuning sub-steps
to learn more discriminative semantic features. Finally, the three types of fea-
tures are concatenated for grading prediction. Experimental results show that
SimGrader outperforms existing methods in both unsupervised and supervised
learning settings, and justify the effect of each step designed in the system.

The current study shows that the discrimination of the features is critical
for code grading based on similarity measurement. As such, we will investigate
other methods to produce more discriminative code features in future. Moreover,
we plan to collect student code in other programming languages and extend
SimGrader to support multiple languages.
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