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Abstract. Latent variable models summarize high-dimensional data
while preserving its many complex properties. This paper proposes a
locality-aware and low-rank approximated Gaussian process latent vari-
able model (LolaGP) that can preserve the global relationship and lo-
cal geometry in the derivation of the latent variables. We realize the
global relationship by imitating the sample similarity non-linearly and
the local geometry based on our newly constructed neighborhood graph.
Formally, we derive LolaGP from GP-LVM and implement a locality-
aware regularization to reflect its adjacency relationship. The neighbor-
hood graph is constructed based on the latent variables, making the local
preservation more resistant to noise disruption and the curse of dimen-
sionality than the previous methods that directly construct it from the
high-dimensional data. Furthermore, we introduce a new lower bound
of a log-posterior distribution based on low-rank matrix approximation,
which allows LolaGP to handle larger datasets than the conventional
GP-LVM extensions. Our contribution is to preserve both the global and
local structures in the derivation of the latent variables using the ro-
bust neighborhood graph and introduce the scalable lower bound of the
log-posterior distribution. We conducted an experimental analysis us-
ing synthetic as well as images with and without highly noise disrupted
datasets. From both qualitative and quantitative standpoint, our method
produced successful results in all experimental settings.

Keywords: Latent Variable Model - Gaussian Processes - Neighborhood
Graph - Diffusion Map.

1 Introduction

Real-world data exist in a high-dimensional data space while including a low-
dimensional manifold. This statement is consistent with the manifold hypothe-
sis [5], and determining the meaningful structure is a general task in machine
learning. Dimensionality reduction [42] is one of the basic approaches to explore
the meaningful structure and estimate the low dimensional manifold, which pre-
serves several properties of the original high dimensional data. The obtained
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low dimensional representation, particularly two or three-dimensional represen-
tation, is frequently useful in interpreting and visualizing complex high dimen-
sional data.

There are numerous approaches to dimensionality reduction. Principal com-
ponent analysis (PCA) [19,35] is one of the representative approaches to deriving
a linear mapping into a low-dimensional subspace. Specifically, PCA selects the
dominant components of a sample covariance matrix and treats them as new
axes of the low-dimensional subspace. Based on this mapping, we can obtain the
low-dimensional representation while preserving the global relationship of the
high-dimensional data. However, in general, since this mapping-based approach
does not take into account the desired subspace, we cannot obtain an optimal
representation for its dimensionality. Probabilistic PCA (PPCA) [37] approaches
this problem by explicitly assuming the low-dimensional representation as la-
tent variables and learning them linearly by imitating the sample similarity.
Gaussian process latent variable model (GP-LVM) [22] incorporates the kernel
method into PPCA and non-linearly imitates the similarity. Those conventional
latent variable models, on the other hand, still have some limitations, such as
the explainability [6,18] of the latent variables, the interpretability [2,25,33] of
the locality within the high-dimensional data, and the scalability [27,34] to the
sample size.

Previous latent variable models can overcome the limitations of these meth-
ods. -variational autoencoder (8-VAE) [6,18,20] tackles the explainability lim-
itation of the latent variables and extracts them as a factor of variation. Specif-
ically, B-VAE attempts to map one latent feature to one variation factor hidden
in the entire dataset (e.g., rotation or shrinking scale). By the disentangled rep-
resentation, S-VAE can generate artificial data where only a single factor has
changed [48]. While 8-VAE is useful for global analysis of high-dimensional data,
it sacrifices local geometry within the high-dimensional data. Locally linear em-
bedding (LLE) [7,33] is one of the representative approaches for incorporating
local geometry into latent variables. LLE employs a two-step learning process,
constructing a neighborhood graph and embedding it into the latent space. LLE
can compress high-dimensional data while maintaining high interpretability of
their local geometry by embedding local information based on the neighborhood
graph. Uniform manifold approximation and projection (UMAP) [27] is a state-
of-the-art method in this graph embedding method that addresses the scalability
issue. UMAP can reduce the dimensionality of large-scale data reflecting their
local manifold (e.g., class separation) and has received a lot of attention for real-
data analysis due to its high scalability and visibility, such as genetic analysis [3],
human population analysis [12], and social network analysis [31]. These embed-
ding methods, however, have a limitation in their graph construction. They build
the neighborhood graph directly from the high-dimensional data, which may re-
sult in an undesirable graph construction due to noise disruption [7] or the curse
of dimensionality [41].

In this paper, we learn the local geometry under noise disruption and the
curse of dimensionality while considering the global relationship via locality-
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aware and low-rank approximated GP-LVM (LolaGP). LolaGP constructs the
neighborhood graph with the low-dimensional latent variables using an iterative
learning strategy. Then, LolaGP introduces a new locality-aware regularization
into GP-LVM, forcing the latent variables to move closer if they are adjacent on
the neighborhood graph. As a result, we can preserve the local geometry more
precisely despite noise disruption and the curse of dimensionality. Furthermore,
the latent representation in LolaGP holds the property of GP-LVM, which im-
plies LolaGP can compress the high-dimensional data while considering both the
global and local structures.

However, Gaussian process-based methods require a matrix inversion for each
training step, and their scalability for even thousands of data points is a concern
[17,32]. Bayesian GP-LVM [11, 39] solves the scalability problem and produces
latent variables in a fully Bayesian manner. While Bayesian GP-LVM improves
scalability more than previous methods, its scalability and even its closed-form
expression collapse with a complex regularization [11]. For this reason, we newly
derive a lower bound of a log-posterior distribution based on a combination of the
previous research [21,38], and this bound allows for scalable optimization using
complex regularization. In summary, LolaGP has the following contributions:

— We construct the neighborhood graph with the low-dimensional la-
tent variables, making the graph construction more robust to the
noise disruption and the curse of dimensionality. Furthermore, We
can also reflect the global relationship and local geometry into the la-
tent variables by using the robust adjacency relation with GP-LVM.

— We introduce the lower bound of the log-posterior distribution. This
bound enables scalable optimization while considering the complex
regularization, which is difficult with the previous GP-LVM exten-
sions.

We conducted an experimental analysis in which we visualized and quantified the
derived latent variables using one synthetic dataset and two image datasets with
and without noise disruptions. In this experiment, we demonstrated that our
proposed method could embed high-dimensional data with high interpretability
of their local geometry while maintaining the global relationship.

2 Background

In this section, we introduce the previous related methods to clarify the posi-
tioning of our proposed method. In 2.1, we briefly describe the graph embedding
methods and discuss their limitations of the learning procedure with a synthetic
dataset. In 2.2, we explain GP-LVM and its extensions and discuss why they
cannot handle thousands of data points.

2.1 Graph Embedding Methods

LLE is a representative approach to reducing dimensionality while preserving
local geometry, and it is closely related to Manifold Learning or Topological
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Fig.1: An example of a neighborhood graph with a synthetic dataset, Spheres.
(a) Ground truth that completely separates each sphere in 101-dimensional space
(‘1” means an edge exists, and ‘0’ means an edge does not), and (b) an example
of a weighted adjacency matrix computed by the Square Exponential kernel.

Data Analysis [46]. LLE and its related methods [2,4,15,27] usually construct
a neighborhood graph of high-dimensional data to preserve the local geometry
while calculating the low dimensional representation based on its adjacency rela-
tion. In the language of topology, shapes of a point set determined by a graph are
Vietoris-Rips complexes, and they can recover various manifolds on which the
point set is actually distributed [1,14]. The Vietoris-Rips complexes’ properties
are supported by a solid theoretical foundation, which motivates the effectiveness
of the graph-based approaches. Although they produce successful results even
in the application settings [47], they have several concerns during the graph
construction phase. We demonstrate them using the Spheres dataset, [28] (Fig.
1), which contains ten small spheres and one large sphere surrounding them,
and the spheres exist in the 101-dimensional space. Ten small spheres have 100
data points with white Gaussian noise, and one large sphere has as many data
points as all small spheres (i.e., 1,000 data points). Under this condition, the
most desirable adjacency matrix should separate each sphere, as shown in Fig.
1 (a). However, in Fig. 1 (b), the non-dialog blocks of the small spheres’ entries
have small values, and the separation of the small spheres is disturbed by the
additive Gaussian noise. Furthermore, the distance between the small spheres’
points and the large sphere’s points is smaller than the distance within the large
sphere’s points. This implies that we cannot realize the large sphere from the
adjacency matrix because of the curse of dimensionality. LolaGP solves these
problems by simultaneously learning the low-dimensional latent variables, and
the neighborhood graph is constructed based on the low-dimensional represen-
tation. This learning strategy can precisely calculate the local geometry-aware
representation under the noise disruption and dimensionality problem.
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2.2 Gaussian Process Latent Variable Model (GP-LVM)

Let Y = [y;,¥9,---,¥n]' € R¥XP be D dimensional (i.e., high-dimensional)
data containing N data points. GP-LVM aims to compress these observed vari-
ables into low-dimensional latent variables X = [x1,Xo,...,xy]" € RV*Q (D >
@) and assumes a generative process from the latent space to the observed space
as

Y.a = £(X) + e £(X) ~ N(0,KRy), € ~ N (0,57'D), (1)
where y. , is d(= 1,2,..., D)-th column vector of Y, € € RY is a Gaussian

noise with a precision 3, and f(X) = f € RV is a Gaussian process prior of the

generative process with a covariance matrix Kg\f,)N € RV*N_ Each entry of the

matrix Kg\t;)N is calculated by a positive definite kernel k() (x,x’). Equation (1)

can be rewritten as p(y. 4/f) = N(y. 4|f, 67'I) and p(f|X) = N(f|0,K§\£)N), and
we can derive a likelihood function by marginalizing the Gaussian process prior
f as

D
p(Y|X) = [[N (.0, K$y + 571 2)
d=1

In vanilla GP-LVM, the deriviation of the latent variables is performed by maxi-
mizing the log-likelihood with respect to X, and this is the same as imitating the
sample similarity matrix YY" into the latent precision matrix (Kg\f,)N +4711)~ L.
By this learning strategy, we can preserve the data structure globally in the
derivation of the low dimensional latent variables X. The extensions of GP-
LVM typically introduce a prior distribution p(X) as a regularization to reflect
several properties into the latent variables [13,23,36,40,41,45]. By this expan-
sion, the maximum likelihood estimation of the latent variables X is replaced
by mazimum a posteriori (MAP) estimation, and a log-posterior distribution is
shown as follows:

log p(X[Y) = log p(Y[X) +log p(X) + C, ®3)

where C' = —logp(Y) is a log-normalized constant of the distribution p(X|Y)
and usually ignored. Although those extensions perform well when embedding
high-dimensional data, they fail to handle thousands of data points because
of the matrix inversion of the N x N matrix K + g~1I. Bayesian GP-LVM
[11, 39] introduces low-rank matrix approximation to perform fully Bayesian
optimization and can handle large datasets as side effects. Bayesian GP-LVM is
an efficient method for obtaining the low-dimensional representation. However,
with a complex prior distribution, such as the GP-LVM extensions, its scalability
and even closed-form expression easily collapse [11]. From the above, we newly
derive a scalable lower bound for MAP estimation, and this bound enables us
to handle large datasets with a complex prior distribution.
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3 Locality-aware and Low-rank Approximated GP-LVM

LolaGP employs an iterative learning process to derive the latent variables and
construct the neighborhood graph using a low-dimensional representation. In 3.1,
we present a locality-aware regularization based on graph Gaussian process [30]
and show how to derive the scalable lower bound in 3.2. In 3.3, we describe
how to build a neighborhood graph for efficient local preservation using latent
variables [25]. Our learning strategy allows for the preservation of both global
and local structures and the calculation of latent variables on a scalable basis.

3.1 Locality-aware Regularization

Similar to the previous graph-based methods presented in 2.1, we preserve the
local geometry using the neighborhood graph and its weighted adjacency matrix
W € R¥*N_ For efficient reflection of the local geometry, we assume that the
latent variables are weighted averages of their neighbors based on graph Gaussian
process [30] by the following equations:

x.q = 8(X) +n, @
N
i1 Whihi

gnzzz%(n:Lz,...,N)? ()

where
n ~ N(0,77'T), h(X) ~ N(0,K),

X.q 18 ¢(=1,2,...,Q)-th column vector of X, W,; is an entry of the weighted
adjacency matrix W, and D € RV*N with a diagonal entry D, is a degree
matrix of W. Furthermore, g(X) = [g1,92,...,9n]" € RY is a graph Gaussian
process prior, h(X) = [hy, ha, ..., hx]T € RY is a Gaussian process prior with a
covariance matrix Kg\];lj)\, with a kernel function £ (x,x’), and n is a Gaussian
noise with a precision v. We show how to calculate W in 3.3. By the prop-
erty of Gaussian distribution, we can rewrite Eqgs. (4) and (5) as the following

probability distributions:

p(x.qlg) = N(x. o2, 7 '), (6)
p(g) = N'(g|o, PKWLPT)
2 N(glo, KE)), (7)

where P = D™'W is a normalized adjacency matrix of W. Note that we can set
up the matrix P as D WD : by simple modification of Eq. (5). By marginal-
izing g, we derive the locality-aware prior distribution p(X) as follows:

Q
p(X) = [ N (x.410, K&\ +71). ®)
q=1
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By this prior distribution, we can reflect the local geometry represented by
the weighted adjacency matrix W into the latent variables, and this graph
Gaussian process-based formulation helps to derive a scalable lower bound.
We optimize the latent variables X by maximizing the posterior distribution
P(X[Y) o p(Y[X)p(X).

3.2 Lower Bound of Log-posterior Distribution

In this subsection, we demonstrate the objective function of LolaGP. We first
describe an exact log-posterior distribution as follows:

log p(X[Y)
ND D 1
= log(27) — 5 log |KS\2\, + /7| - itr [(Kg\f,)N + ﬁ_lI)_lYYT]
NQ Q _ 1 e
— =5~ log(2m) — 3 log [K§) +797'1 - St [(KS\?])\, A7) 1qu . (9)

This exact log-posterior is not a scalable objective function because its evaluation
requires O(N?) time complexity for the matrix inversion of the N x N matrices
Kg)N + A7 and Kg\%)v + ~7'I. From the above, we introduce a newly scalable
lower bound based on low-rank approximation of these matrices. Fortunately,
both the likelihood in Eq. (2) and the prior distribution in Eq. (8) are Gaussian
distributed with the marginalized Gaussian process priors f € RY and g € RV,
and we can select M inducing points u € RM and v € R from the Gaussian
process priors with same latent positions Z = [z1,2s,...,2zy] € RM*Q. The
joint probabilities p(f,u) and p(g,v) are also Gaussian distributed, and we can
write the probability distributions of f and g respectively conditioned by u and v
and the marginal distributions of the inducing points by the following equations:

f f)— f f £)— f
p(flu) = N(EIK G, K w KO - KGO K S K ), (10)
p(glv) = N(gK &), K&, 'v. K&, — K& K& 'KE,), (11)
f
p(uZ) = N(u|0,KD,),  p(v|Z) = N(v|0,KZ),), (12)

where K\, € R¥*M and K), € RM*N (. = f,g) are covariance matrices
between the latent variables X and the positions Z, and KEW) M € RMXM g 5
covariance matrix of Z. We define QS\',)N = Kg\',)MKg\'/[)X/[lKE\'/[) n to simplify the no-
tation, and they can be regarded as the low-rank (i.e., Nystrém) approximation
of the full matrix KS\',)N.

By those probability distributions, we introduce a lower bound of the log-
posterior distribution based on a combination of the previous research [21, 38].
We explicitly marginalize the inducing points u and v as

log p(X[Y)
Q

D
- Z1og/p(y:7d\u)p(u|2)du+ng/p(x:,q\v)p(wzmv. (13)
d=1

q=1
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Next, we evaluate two likelihood functions p(y. ,/u) and p(x. 4|v) by the following
Jensen’s inequality [38]:

log p(y. 4lu) > Epepu) [log p(y. 4If)] , (14)

)

Ing(Xi,q|v) > IE:p(g|v) [logp(xz,q|g)] . (15)

By substituting Eqgs. (14) and (15) into Eq. (13), we can derive the following
scalable lower bound of the log-posterior distribution:

log p(X[Y)
Z{l‘)gN (.10, QU +571) — Zur(K ), - 5£>N>}
. Q
+ 3 {lom N ox.gl0. Qi +97'D) = STy - Q) . (16)
q=1

and we can also expand each summation as

D
™ ity 0 4710 — St~

d=1

ND D
= — =~ log(2m) — T log Q¥ + 57

D
ftr QY +p71)" 1YYT} —%tr(KS?N— O,
Q
>~ {108 M (x,4/0. QY +97'D) — Jer(K(E), — Q) }
qg=1
= 7? log(2m) — log Q) + 7]
Q

5t [(@QE + 97D XXT] - Wk, - Qi)

Comparing Egs. (9) and (16), the full covariance matrix K( N s replaced by

the low-rank covariance matrix Q N With the additional trace term tr(KS\,)N

Q N N). By this replacement, we can avoid computing the N x N matrix inver-
sion and can reduce the time complexity O(N?) to O(NM?) by applying the
Woodbury matrix identity to Eq. (16).

3.3 Construction of Neighborhood Graph

We need the neighborhood graph to reflect the local geometry in the latent vari-
ables to achieve our objective. Intuitively, The Euclidean distance is appropriate
for calculating the adjacency matrix, but this metric cannot precisely realize the
local geometry. We visualize this in Fig. 2. From Fig. 2 (a), The distribution of
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Fig. 2: Transformation of the latent variables into local preserving features. We
show (a) data with two different density areas and different potential similar-
ities, (b) neighborhood-based similarities to realize the local geometry and (c)
a diffusion process to transform the latent variables into the locally preserving
features.

data can be divided into two areas: dense and sparse, and the potential similar-
ities between them are influenced by their local densities. However, we cannot
realize the non-linear geometry by the Euclidean distance since it is a simple
straight line in the Euclidean space. To overcome this difficulty, we peculiarly
focus on diffusion map [10,25], which captures the local geometry by propagat-
ing neighborhood similarities by the diffusion process, i.e., powering a random
walk matrix. In LolaGP, we transform the latent variables into locally preserv-
ing features based on the diffusion process and calculate the weighted adjacency
matrix using them.

We first calculate a similarity matrix S € RV*N of the latent variables X
that realizes the local geometry based on the a-decay kernel [25] as

et (552 oo ()] o0

where « is a hyperparameter that controls the decay rate of each exponential
value, and €, (x,) is the Euclidean distance between x, and its k-nearest neigh-
bor. The position of eg(x.) is the same as the lengthscale parameter of the
Squared Exponential (SE) kernel, and we can reflect the neighborhood geome-
try of x, by setting k to appropriate values (Fig. 2 (b)). We calculate a random
walk matrix of S as R = Dg'S (Dsg is the degree matrix of S) and derive fea-
tures after t-step diffusion of the neighborhood-based similarities (Fig. 2 (c)) by
powering R as

U® =R, UW = [ugt),ugt), ce ug\t,)]T € RVXN, (18)
Each row vector uff ) € RV indicates the strength of the interconnection between
sample n and the other samples after the t-step diffusion, and it is reasonable to
state that nearby samples on the local manifold have similar vector values. We
regard U® as the locally preserving features of X and calculate the weighted

adjacency matrix W based on them. Since the vector usf ) is the probability
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value, we take the logarithm of it for efficient computation. Using the information
above, we can calculate each entry of W using the following equation:

Wi; = exp (fH log ugt) — log ulg-t)Hg) . (19)

The weighted matrix W appears in the gram matrices K%)V and Q%)V in

Eq. (16) as its normalized form P, and we calculate the normalized matrix with
respect to X and Z as Px and Pz, respectively. Finally, we calculate each gram
matrix as

K\, = PxK{) Py,
Ky = PzKy\ Py,

KE, =P,k Px.

These matrices allow the latent variables to realize the non-linear geometry.

To summarize, we extend GP-LVM by introducing locality-aware regular-
ization via latent variables with the newly constructed neighborhood graph to
avoid the influence of noise disruption or the curse of dimensionality. We also
use sparse Gaussian process methods to derive the lower bound of the exact
log-posterior distribution. Our method can embed high-dimensional data with
high scalability and interpretability of both global and local structures, thanks
to this innovation.

4 Experiments

In this section, we conduct an experimental analysis to validate the efficacy of our
method. We assessed LolaGP and other comparative methods in both qualitative
and quantitative ways, viz., by visualizing latent variables and computing quality
metrics. We used the Gaussian process open library GPy [16] on an Intel Core
i7-10700 CPU to implement our source code.

4.1 Experimental Settings

Datasets. We used two image datasets, COIL20 [29] and MNIST? and one syn-
thetic dataset, Spheres [28], described in 2.1. COIL20 contains 1,440 grayscale
images of 20 objects, and each object is captured evenly in a single rotation
across 72 images. We selected five objects (indexed as {1, 4, 6, 11, 13}) from
COIL20 dataset. Furthermore, in order to get closer to our problem setting, we
randomly lost pixels from the selected images with a probability of 35% and
regarded them as Noisy COIL20 dataset referring to [24] (see Fig. 3). Both
COIL20 and Noisy COIL20 include the global relationship based on the object
separation and the local geometry according to the object rotation. In MNIST,

3 http://yann.lecun.com/exdb/mnist/
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Fig.3: Visualization results of the five datasets (COIL20, Noisy COIL20,
MNIST, Noisy MNIST, and Spheres). Each color shows the separatable class in
the dataset, i.e., each object (COIL20 and Noisy COIL20), each digit (MNIST
and Noisy MNIST), and each sphere (Spheres). We ignored some outliers for
effficient visualization.

we randomly selected 5,000 images from the training set and also build Noisy
MNIST by randomly losing their pixels with a probability of 25% which is the
limit to remain the characteristics of each digit.

Comparative Methods. We compared our proposed method (PM) with LLE
[33] and Bayesian GP-LVM [11] as benchmarks described in section 2. Further-
more, we took the commonly used method, t-SNE [43], and further adopted
UMAP [27] as the state-of-the-art method in the same manner as the previous
research [28]. All methods were compared from both qualitative and quantita-
tive perspectives after embedding the observed high-dimensional data into two-
dimensional latent space.

Training Procedure. The trainable parameters in our proposed method are the
latent variables X and the locations of the inducing points Z. We initialized them
by PCA [19] and by randomly picking up from the initialized X, respectively.
Furthermore, we need the normalized adjacency matrix P in 3.3 and initialized
it by computing P from the observed variables Y. Under this initialization, we
iterated our method two times and changed P following the latent variables X
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in the middle iteration. We selected the ‘SE+linear+whitenoise’ kernel with the
automatic relevance determination (ARD) [26] as the kernel functions k() (x, x’)
and kM (x, x'):

kO (x, %)
Q Q

1
2 /1\2 2 / 2
= OgEg €XpP _5 § aSE,q(wq - xq) + Olin. E a’lianquq + Unoiseaxyxl’ (20)
q=1 q=1

where 6 = {0(SE lin. noise} {a{SEJin,},q}?:l} is a collection of the kernel parame-
ters and was simultaneously optimized by maximizing Eq. (16). We also adopted
this kernel to Bayesian GP-LVM following to [39]. The latent space is scaled
along its axes by the ARD parameters a(sg jincar},q, and it is expected to find
several geometric properties by this scaling. We optimized these parameters by
the well-established quasi-Newton algorithm L-BFGS-B method [49].

Quality Metrics. To quantify the derived latent variables, we used two metrics,
Kullback-Leibler divergence (KL,) and trustworthiness (Trust) [44]. We evalu-
ated the global preservation based on KL, and the local one based on Trust. To
calculate KL, we estimated the density of the observed and latent space based
on the kernel density estimation methods [8,9] and then calculate the KL diver-
gence between those densities. 0 € Ry is the lengthscale parameter of the kernel
function and multiple values were chosen based on previous research [28]. Trust
measures whether the k-nearest neighbors in the observed space is preserved in
the latent space, and we set k to 3. In Noisy COIL20 and Noisy MNIST, we
were interested in the preservation of the data structure before the noise disrup-
tion and calculated each metric between the derived latent variables and vanilla
COIL20 and MNIST, respectively.

4.2 Results

Visualization. Figure 3 shows the visualization results of all the datasets. In
COIL20, all methods can preserve the global relationship and local geometry we
expected. However, in Noisy COIL20, we confirm that the added missing pixel
noise has a significant impact on LLE, t-SNE, and UMAP and that even the
global object separation is barely preserved. Since PM and Bayesian GP-LVM
learn the global relationship based on the sample similarity, they successfully
separated each object under the noise disruption, and PM completely recovered
the local rotation geometry. In MNIST and Noisy MNIST, we can find a similar
tendency to the results of COIL20. Although t-SNE and UMAP behave well in
MNIST, we can see the accuracy degradation in the Noisy case. PM has the
best result under the noise (e.g., the separation of ‘3’, ‘5’, and ‘8’ manifolds) and
has better boundary of each digit than Bayesian GP-LVM in MNIST and Noisy
MNIST. We observe that PM only realizes the enclosing structure hidden in the
dataset. Bayesian GP-LVM, t-SNE, and UMAP can preserve the separation of
each small sphere. However, they cannot realize the large one due to the curse of
dimensionality. LLE cannot separate even small spheres, and we observed they
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Table 1: Quality evaluation based on the two quality metrics, KL divergence
(KL,) and Trustworthiness (Trust). The best is boldfaced, and the second best
is underlined.

Dataset Method KLpo1 4 KLo1d KLi | Trustt
PM 0.140 0.0407 0.00180 0.981
Bayesian GP-LVM  0.119  0.0527 0.00161 0.989
COIL20 LLE 0.191  0.0624 0.00336 0.948
t-SNE 0.0299 0.120 0.00677 0.999
UMAP 0.0312  0.113  0.00630 0.998
PM 0.145 0.0682 0.00170 0.987
Bayesian GP-LVM 0.104 0.0751 0.00287 0.979
Noisy COIL20 LLE 0.246 0.110  0.00419 0.880
t-SNE 0.265 0.128  0.00392 0.892
UMAP 0.488  0.0818 0.00456 0.905
PM 0.108 0.140 0.00155 0.928
Bayesian GP-LVM  0.130 0.144  0.00157 0.916
MNIST LLE 0.577 0.309  0.00345 0.825
t-SNE 0.108 0.180 0.00275 0.995
UMAP 0.129 0.178  0.00296 0.977
PM 0.0765 0.171 0.00254 0.933
Bayesian GP-LVM 0.186  0.171 0.00206 0.911
Noisy MNIST LLE 0.286 0.222  0.00276 0.750
t-SNE 0.171 0.181  0.00240 0.932
UMAP 0.101  0.174 0.00253 0.931
PM 0.299 0.546 0.0125  0.650
Bayesian GP-LVM  0.401 0.679 0.0158  0.647
Spheres LLE 0.576 0.696 0.0210  0.659
t-SNE 0.294 0.516 0.0114 0.687
UMAP 0.339 0.535 0.0131 0.687

were covered with the point clouds of the large one. LolaGP successfully embeds
the five datasets without significant degradation due to noise and dimensionality
effects such as t-SNE and UMAP, implying the efficacy of our novelties.

Quantitative Results. We show the quantitative results in Table 1. In KL, We
confirm that our proposed method is the best in eight of fifteen entries and the
second-best in four, indicating that PM can preserve the global data structure
better than the other methods. In Trust, PM shows successful results on average
as opposed to t-SNE and UMAP, which have significant accuracy degradation
in Noisy COIL20 and Noisy MNIST. These results imply the validity of our
robust neighborhood preservation via the latent variables. However, in Spheres,
PM is slightly inferior to t-SNE and UMAP. Unfortunately, the reliable quality
measurement of Spheres is a difficult task because these data contain the curse
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of dimensionality problem described in 2.1 [28]. Although our method is inferior
to t-SNE and UMAP on Trust in the result of Spheres, it is clear that PM
outperforms the comparative methods in the other general image datasets and
only detects the true neighbors on the manifold in Spheres from the visualization
results.

5 Conclusions

We have introduced a novel latent variable model, LolaGP, that can summarize
the complex high-dimensional data into the latent variables while preserving
global and local structures. We focused on GP-LVM to preserve the global rela-
tionship and introduced a novel regularization based on the neighborhood graph
to preserve the local geometry. The graph is built with latent variables, which
promotes robustness to noise disruption and the curse of dimensionality. Further-
more, we introduced the scalable lower bound of the log-posterior distribution
based on the low-rank matrix approximation, which allows us to handle larger
datasets than the previous GP-LVM extensions. In the experimental results, we
have shown the effectiveness of our proposed method from the qualitative and
quantitative perspectives on the natural and even highly disrupted datasets like
Noisy COIL20 and Noisy MNIST.

One drawback of our proposed method is its generativity. Although the latent
variables should be visualized discretely for each independent manifold, such as
t-SNE and UMAP, the generativity forces the latent variables to change contin-
uously. Our GP-based approach aids in the discovery of the global relationship
between the noise effect and the curse of dimensionality, which can be found in
various situations. It would be preferable to modify the likelihood function to
make it more suitable for visualization in future works.
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