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Abstract. Next basket recommendation seeks to model the correlation
of items and mine users’ interests hidden in basket sequences, and tries
to infer a set of items that tend to be adopted in the next session with
the mined information. However, the feedback provided by users often
involves only a small fraction of millions to billions of items. Sparse data
makes it hard for model to infer high-quality representations for basket
sequences, which further leads to poor recommendation. Inspired by the
recent success of representation learning in some fields, e.g., computer
vision and clustering, we propose a basket booster for prototype-based
contrastive learning (BPCL) in next basket recommendation. A cor-
relative basket booster is designed to mine self-supervised signals just
from raw data and make augmentation for baskets. To our best knowl-
edge, this is the first work to promote learning of prototype representa-
tion through basket augmentation, which helps overcome the difficulties
caused by data sparsity and leads to a better next basket recommen-
dation performance. Extensive experiments on three public real-world
datasets demonstrate that the proposed BPCL method achieves better
performance than the existing state-of-the-art methods.

Keywords: Contrastive Learning · Next Basket Recommendation · Data
Augmentation.

1 Introduction

With the rapid growth of the number of entities involved in online platforms, it
is difficult for users to find the items that meet their demands. Therefore, rec-
ommendation systems are widely used to provide users with more proper items
by mining information contained in historical data, e.g., user preferences. There
are many previous works trying to model user and item portraits by making use
of historical interactions as a set [3, 5, 23, 29], regardless of chronological order.
However, chronological order often contributes significantly to recommendation,
as the interests of users change over time [10]. To capture evolving interests of
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users, some attempts have been made in sequential recommendation [1, 4, 10, 12]
that tries to learn representation of strictly sequential sequence. Note that user
interactions are not strictly sequential over a short period in many cases, e.g.,
multiple items may be purchased with different intentions in the same shopping
session. Next basket recommendation [8, 16, 24, 28] breaks through the bottleneck
of sequential recommendation by recommending a set of items simultaneously.
Fig. 1 shows an example for next basket recommendation, in which the last bas-
ket is expected to be inferred with the preceding basket sequence with length of
2. Note that both of basket and basket sequence have no fixed size, so the size
of the predicted next basket is predefined in next basket recommendation.

coconut, gloves, fruit knife notebook, milk, marking pen, cake pizza, pencil

Fig. 1. An example for next basket recommendation.

Data sparsity is a severe challenge for recommendation tasks. The feedback
provided by users often involves only a small fraction of millions to billions of
items, which makes it hard for model to infer high-quality representations for
basket sequences. In the recent years, contrastive learning has been shown to
perform well in representation learning in the data-sparse tasks, such as com-
puter vision [14, 17, 18] and clustering [13, 20]. The main idea lies in capturing
self-supervised signals from raw data with various data augmentations. In com-
puter vision, it is easy to augment data by rotation, changing color or adding
noise, but these methods are unsuitable for recommendation tasks because of the
different data types. In order to integrate the advantages of contrastive learn-
ing into recommendation tasks, some attempts have been made in developing
augmentation methods for item sequence in sequential recommendation [22, 25].
These methods mainly rely on executing random reordering, clipping or inser-
tion of items, which are not applicable for basket sequence since it would destroy
the correlation of items within a basket. The augmentation for basket sequences
in next basket recommendation remains an unaddressed issue.

To address the issues mentioned above, we introduce contrastive learning to
next basket recommendation by proposing a basket booster for prototype-based
contrastive learning (BPCL). Basket sequences are modeled via an item corre-
lation graph for constructing correlation matrix. With the correlation matrix, we
develop a correlation basket booster for basket augmentation, which maintains
the correlation between intra-basket items while introducing randomness. The
augmented basket sequences as well as the corresponding prototype basket se-
quences will be encoded to basket sequence representations for prototype-based
contrastive learning to improve the performance of next basket recommendation.
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To summarize, our contributions are listed as follows:

– We propose a BPCL method that introduces contrastive learning to next
basket recommendation to mine self-supervised signals from primitive basket
sequences, i.e., prototypes. To our best knowledge, this is the first work to
promote learning of prototype representation through basket augmentation.

– We propose a basket booster for prototype-based contrastive learning to
maintain the correlation between intra-basket items while introducing ran-
domness. The effectiveness of the booster is demonstrated by ablation study.

– Comprehensive experiments on three public real-world datasets demonstrate
that the proposed BPCL method achieves better basket recommendation
performance than the state-of-the-art methods in terms of the four metrics.

2 Related Work

In this section, we will briefly review previous works related to our work, namely
next basket recommendation and contrastive learning.

2.1 Next Basket Recommendation

Temporal recommendation focusing on modeling interactions with timeline has
shown competitive performance in many time-sensitive scenarios [2]. According
to the target of recommendation, temporal recommendation can be divided to
sequential recommendation and basket recommendation. Specially, next basket
recommendation is a type of basket recommendation that predicts next basket
without any information from next basket. Sequential recommendation [7, 27, 30,
32] seeks to predict next item with the representation of item sequence, while
next basket recommendation [16, 21, 24, 26] tries to predict next basket with the
representation of basket sequence. In many real-world scenarios, interactions do
not in strict chronological order over a short period, e.g., a shopping session.
Hence, next basket recommendation that fits the situation has gained increasing
attention in recent years.

There are some previous works [8, 16, 31] focusing on modeling qualified rep-
resentation of basket sequence to guide the prediction of next basket. Hu et
al. [8] design a KNN-based method to model basket sequence representation
with the information from similar users’ interactions. Le et al. [16] model basket
sequence representation by developing a hierarchical network considering both
inter-basket association and intra-basket association. Recently, advanced repre-
sentation learning methods such as graph embedding [10, 19], attention mecha-
nisms [7, 12] are widely applied in sequential recommendation for their outstand-
ing performance in learning representation. However, the performance of these
methods depends on data in a high degree, while the feedback provided by users
often involves only a small fraction of millions to billions of items leading to data
sparsity. It is necessary to develop a method to alleviate the issues caused by
sparse data in next basket recommendation.
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2.2 Contrastive Learning

Contrastive learning aims to mine useful signals from unlabeled data to alle-
viate sparse data problems. This method has been widely used in some fields,
e.g., computer vision [14, 17, 18] and clustering [13, 20]. For computer vision, con-
trastive learning can be adopted to promote performance of domain adaptation
[11]. For clustering, contrastive learning can help with learning representation
of different clusters [20]. When it comes to basket recommendation, only a few
attempts has been made in leveraging contrastive learning to alleviate the prob-
lem of data sparsity. To our best knowledge, the only attempt for integrating
contrastive learning to next basket recommendation is [24]. It tries to split a tar-
get basket sequence into two sub-basket sequences according to the correlation
between the item in a basket and the item in candidate set, and aims to learn
a qualified representation for the filtered pos-basket sequence. However, in next
basket recommendation, augmentation method for learning better representa-
tion of prototype is less well-studied.

3 The Proposed Method

In this section, we present the proposed BPCL method for next basket recom-
mendation. We start with formulating next basket recommendation problem in
Section 3.1. Then, we introduce the proposed BPCL method in detail in Section
3.2 with six parts, i.e., correlative basket booster, basket encoder, dynamic con-
text encoder, basket predictor, prototype-based contrastive learning and multi-
task training. The overall architecture of BPCL is illustrated in Fig. 2.

3.1 Problem Statement

Let I = {i1, . . . , iN} denote the set of items and Bt =
{
i1, . . . , i|Bt|

}
denote the

basket at time step t, where N is the number of items and Bt ⊂ I. Given a
basket sequence S = [B1, . . . ,B|S|] consisting of several baskets, where |S| is the
length of S, next basket recommendation aims to predict several items to be
adopted at time step (|S|+ 1) as:

B̂|S|+1 = Ki∈I(P(i ∈ B|S|+1|S)) (1)

where K denotes k items picked with the highest probability. Note that k is
a predefined number indicating the size of the next basket, and next basket
recommendation predicts all items in the next basket simultaneously.

3.2 BPCL

Correlative Basket Booster Given a basket Bt, it will be converted to a
binary vector as bt ∈ {0, 1}N in which the n-th entry is set to 1 if in ∈ Bt. For
basket augmentation, one of the most direct ways is random masking, i.e., ran-
domly set some 1 to 0 in the vector. We argue that using random masking alone
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Fig. 2. The architecture of the proposed BPCL method.

can destroy the correlation between items within the same basket. Instead of
augmenting basket by random masking, we propose a correlative basket booster
to maintain the correlation and introduce randomness for data augmentation.

When modeling correlation between items by a graph, each item can be
regarded as a node in the graph. For item p and q, the weight of their connection
edge can be set to the number of times that they are in the same basket. And
then we can obtain a weighted adjacency matrix A ∈ R|I|×|I| according to the
graph. Further, the adjacency matrix can be normalized to correlation matrix
C ∈ R|I|×|I|, with each Cpq defined as:

Cpq =

{
0, p = q;

Apq√∑
p Apq

√∑
q Apq

, p 6= q.
(2)

With the correlation matrix, we can distinguish the items associated with a
basket in a higher degree for basket augmentation as:

b = max {0,b ·C} . (3)
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However, it is unreasonable for that b and C are in different representation
spaces. And we should map them to the same latent space before matching.
Finally, the formulation of the proposed correlative basket booster is:

baug = b
′
◦B(m) (4)

b
′

= max(0, (bΠ + δ) · (CΥ + ξ)T ) (5)

where ◦ means element-wise product, m ∈ RN conforms to the uniform distri-
bution, i.e., mn ∼ U(0, 1), Π ∈ RN×L, δ ∈ RL, Υ ∈ RN×L and ξ ∈ RN×L are
learnable parameters, L is the correlation latent dimension, and B is defined as:

B(xp) =

{
0, if xp ≤ µ;

1, if xp > µ
(6)

where µ ∈ R+ is a hyper-parameter of mask threshold. The correlation matrix
contributes to maintain the correlation between items within the same basket,
while masking introduces some randomness.

The correlative basket booster will work for the data augmentation in con-
trastive learning task.

Basket Encoder Although the vectorized basket representation bt of Bt in-
cludes the direct relationships between the basket and all items, the information
contained in the high-dimensional vector is far less than the maximum infor-
mation it can store. In order to reduce data redundancy, we compress it to a
low-dimensional space and obtain the hidden representation ht of basket Bt as:

ht = F(bt ·Φ + θ) (7)

where F is an activation function, e.g., Relu, Φ ∈ RN×H , θ ∈ RH are learnable
parameters, and H is the basket latent dimension.

Dynamic Context Encoder Since basket sequence consists of a string of
chronological sets of interactions, it is convenient to mine dynamic user inter-
est hidden in the sequence to guide next basket recommendation. We utilize a
Recurrent Neural Network (RNN) [1, 6, 15] to model basket sequence as:

st = G(htΨ + st−1Ω +ϕ) (8)

where st is the sequence hidden representation at time step t, G is an activation
function, Ψ ∈ RH×K , Ω ∈ RK×K and ϕ ∈ RK are learnable parameters, K is
the sequence latent dimension. The sequence hidden state at time step |S| , i.e.,
s|S|, encodes the interaction context of basket sequence S.
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Basket Predictor In intuition, we can get the probability that each item
belongs to the next basket by linearly mapping the sequence representation s|S|
to probability space. However, the method ignores the importance of correlation
between items within the same basket for next basket recommendation. So we
utilize the correlation matrix C defined in Eq. (2) to provide information about
the correlation between items:

y = s|S| ·
1

1 + e−ΛC
(9)

where Λ ∈ RK×N is a learnable weight matrix.
We choose the recommendation loss Lrec with the expectation that items

belonging to the next basket are assigned with a higher probability, and encour-
age them to maintain the greatest possible advantage over items not in the next
basket. Then the objective function is formulated as:

Lrec = −
N − |B|S|+1|
|B|S|+1|

∑
p∈B|S|+1

log(
1

1 + e−yp
)−

∑
q/∈B|S|+1

log(
er−yq

1 + er−yq
) (10)

where r is the minimum probability of items belonging to the next basket.
To help the recommendation task encode basket sequence, and learn a better

representation for final prediction, we try to integrate contrastive learning into
recommendation task in the next section.

Prototype-based Contrastive Learning With the correlative basket booster
defined by Eq. (4), two augmentations can be obtained for a basket sequence S =

[B1, . . . ,B|S|] by executing augmentation twice, namely S(1) = [B(1)1 , . . . ,B(1)|S| ]
and S(2) = [B(2)1 , . . . ,B(2)|S| ]. There are (2 × M) augmentations corresponding

to a batch of basket sequences with batch size of M . To construct contrastive
signals, the two augmentations from the same basket sequence will be treated as
a positive pair, and the remaining 2(M−1) augmentations from different basket
sequences will be treated as negative pairs.

All the augmentations in the batch can be encoded by the context encoder

defined in Eq. (8), denoted as Saug =
{

s
(1)
1 , . . . , s

(1)
M , s

(2)
1 , . . . , s

(2)
M

}
. The con-

trastive loss Lcl is designed to maximize the similarity of representations from
the same basket, and minimize the similarity of representations from different
baskets. To achieve the goal, we can define contrastive loss for the augmented

basket sequence S
(1)
p in the batch as:

Lcl(s
(1)
p , s(2)p ) = − log

exp(s
(1)
p · s(2)p

T
)

exp(s
(1)
p · s(2)p

T
) +

∑
s−∈S−aug

exp(s
(1)
p · s−T )

(11)

where S−aug is the set of sequence representations of augmentations from different

basket sequences with S
(1)
p in the batch.
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Note that introducing contrastive learning into the recommendation task
would help the recommendation model learn the representation of basket se-
quence that is more conducive to predict recommendation probability. However,
augmented basket sequences inevitably lose some information of their primi-
tive basket sequences. In order to preserve as much information as possible of
prototype, we further define a prototype-based contrastive learning loss as:

Lcl(sp, s
(1)
p , s(2)p ) = − log

exp(s
(1)
p · spT )

exp(s
(1)
p · spT )) +

∑
s−∈S− exp(s

(1)
p · s−T )

− log
exp(s

(1)
p · s(2)p

T
)

exp(s
(1)
p · s(2)p

T
) +

∑
s−∈S−aug

exp(s
(1)
p · s−T )

(12)

where S− is the set of sequence representations of prototypes and S(1)aug ={
s
(1)
1 , . . . , s

(1)
M

}
in the batch except sp and s

(1)
p .

Multi-Task Training In the previous sections, we introduced the correlative
basket booster for augmentation, the part of model for recommendation task,
and the part of model for contrastive learning task, respectively. In this section,
we adopt a multi-task strategy to combine them by optimizing them jointly as:

L = Lrec + λLcl (13)

where λ ∈ R is a hyper-parameter to adjust the intensity of contrastive learning.

4 Experiments

In this section, we design extensive experiments to evaluate the performance of
the proposed BPCL method against six baseline methods on three real-world
datasets. In particular, we aim to answer the following three research questions:

– RQ1: How does the proposed BPCL method perform on next basket rec-
ommendation compared with existing methods?

– RQ2: Whether the prototype-based contrastive learning with correlative
basket booster promotes the model to recommend the next basket?

– RQ3: How do the key hyper-parameters, i.e., the correlation latent dimen-
sion L, the weight of contrastive learning λ and the mask threshold µ, affect
model quality?

4.1 Experiments Settings

Datasets We conduct experiments on three public real-world datasets: Deli-
cious1, Beauty2 and TaFeng3. Delicious contains tagging information from Nov

1 http://www.delicious.com
2 https://www.kaggle.com/skillsmuggler/amazon-ratings
3 https://www.kaggle.com/chiranjivdas09/ta-feng-grocery-dataset
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Table 1. Statistics for the Delicious, Beauty and TaFeng datasets

Dataset Num of items Average basket size Average basket sequence length

Delicious 8920 3.78 31.66

Beauty 19340 1.50 6.33

TaFeng 14313 5.76 4.90

2003 to Nov 2010 of a social bookmarking system, in which the tags assigned
to the same bookmark is regarded as a basket. Beauty consists of interactions
from May 1996 to Jul 2014 of subcategory “Beauty” on Amazon, and TaFeng
contains the transaction data of a Chinese grocery store from Nov 2000 to Feb
2001. We define the set of items that are interacted with the same user within
the same day as a basket for the two datasets. Each basket sequence consists of
the baskets from the same user in chronological order. The statistics of the three
datasets are described in Table 1.

Following [16], we divide the basket sequences into three non-overlapping
time periods as training set, validation set and testing set. The items and users
with less than 5 interactions, as well as the basket sequences of less than 3 in
length are filtered out. For Delicious, the part of interactions before Sep 2010 is
treated as training set, the part from Sep to Oct of 2010 is validation set and
the part after Oct 2010 is testing set. For Beauty, the part of interactions before
Jun 2013 is treated as training set, the part after Jul of 2013 is validation set
and the part of 2014 is testing set. For TaFeng, the part of interactions of 2000
is treated as training set, the part before Jan of 2001 is validation set and the
part after Feb 2001 is testing set.

Evaluation Given a basket sequence S = [B1, . . . ,B|S|], the preceding (|S| − 1)
baskets are used to predict the last basket, and any sequence with more than 30
baskets will be truncated with the prefix cut off. To evaluate the performance
of the proposed method and baselines, we adopt the widely used Hit Ratio
(HR@K) [4, 9, 22] and F-measure (F1@K) [15, 24] as evaluation metrics with
K = 5 and K = 20, which can be formulated as:

HR@K =

∑
Hit(BKpred)∑

Btarget∈T |Btarget|
(14)

F1@K =
2×Recall@K × Precision@K

Recall@K + Precision@K
(15)

where Btarget and BKpred denote a target basket and the corresponding predicted
basket with the size of K respectively, Hit counts the number of items that
appear in both BKpred and Btarget, and T is the set of the last basket in the
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testing set. The Recall@K and Precision@K are defined as:

Recall@K =
1

|T |
∑

Btarget∈T

Hit(BKpred)

|Btarget|
(16)

Precision@K =
1

|T |
∑

Btarget∈T

Hit(BKpred)

|BKpred|
. (17)

Baselines We adopt the following six recommendation models for comparison.

– POP-K It is a non-personalized recommendation model that recommends
K items with the highest popularity in terms of basket for users.

– MCNet It learns transition probability between the latest basket and can-
didate items based on the Markov-chain implemented by a neural network.

– BSEQ[15] It recommends next basket based on the corresponding basket
sequence representation learned by making use of recurrent neural network.

– SASRec[12] It makes an adaption for transformer layer to learn the correla-
tion of items in sequences, and recommends items based on the correlation.

– CoSeRec[22] It introduces two informative augmentations for item sequence
to construct self-supervised signals, and applies transformer encoder to pro-
mote recommendation performance.

– Beacon[16] It is a state-of-the-art model for next basket recommendation
that utilizes correlation between items to encode basket sequences and con-
duct next basket recommendation.

Implementation Details We choose LSTM with 0.3 dropout probability as
the type of recurrent layer units, and set the latent dimension L, H and K as 32.
The RMSProp optimizer with a learning rate of 0.01 is adopted for optimizing
the model. For hyper-parameters, we tune mask threshold µ within the range
of {0.5, 0.6, 0.7, 0.8, 0.9}, and contrastive learning weight λ within the range of
{0.05, 0.1, 0.2, 0.3, 0.4}. To be fair, the hyper-parameters of baseline methods
share the same experimental settings as mentioned above. As for the others,
we tune them on the validation set applying early stopping with patience of 5
epochs, and report results on the testing set.

4.2 Performance Comparison

Table 2 presents the experimental results of the all methods on the three real-
world datasets. We can observe that the proposed BPCL method obtains the best
performance on the three datasets in terms of the four metrics. For all datasets,
our model achieves at least 7% improvement in every metric, which helps answer
RQ1. In particular, it achieves at least 44% improvement on Beauty. We can find
that Beauty contains the largest number of items and the least average interac-
tions among the three datasets from Table 1, so the experimental results suggest
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Table 2. Performance comparison of different methods on next basket recommenda-
tion. The best scores on all datasets are highlighted in bold and the second best is
labeled with *. The last column is the improvement compared with the best baseline
results.

Model Metrics POP BSEQ MCNet SASRec CoSeRec Beacon BPCL Improve

Delicious

HR@K
(%)

5 1.84 3.28 3.66∗ 2.89 0.16 3.09 4.00 9.29%
20 7.73 10.5∗ 10.4 8.86 0.59 9.25 11.4 8.57%

F1@K
(×102)

5 1.83 2.24 2.57∗ 2.19 0.11 2.22 2.75 7.00%
20 2.24 2.93∗ 2.91 2.50 0.17 2.61 3.16 7.85%

Beauty

HR@K
(%)

5 0.04 0.00 0.23 0.11 0.15 0.41∗ 0.68 65.9%
20 0.83 0.19 0.26 0.34 0.38 1.02∗ 1.47 44.1%

F1@K
(×102)

5 0.02 0.00 0.09 0.04 0.06 0.16∗ 0.28 75.0%
20 0.12 0.03 0.03 0.05 0.05 0.13∗ 0.19 46.2%

Tafeng

HR@K
(%)

5 4.65 4.66 4.73 4.32 3.67 5.11∗ 5.52 8.02%
20 6.03 6.41 6.65 6.24 5.98 7.29∗ 7.88 8.09%

F1@K
(×102)

5 4.79 4.80 4.84 4.40 3.72 5.20∗ 5.63 8.27%
20 2.75∗ 2.45 2.52 2.37 2.27 2.75∗ 2.98 8.36%

that BPCL can effectively overcome the difficulties caused by data sparsity in
next basket recommendation.

Note that CoSeRec is a sequential recommendation model that introduces in-
formative augmentation for contrastive learning, but achieves poor performance
comparing to the others on Delicious which contains the most average inter-
actions among the three datasets. This is perhaps due to its intent to predict
the next item by modeling item sequence with the assumption that interactions
are in strict chronological order which is at odds with the reality, and improper
augmentation for item sequences destruct the intra-basket correlation. BSEQ
performs well on Delicious and Tafeng, but fails on Beauty, a dataset with large
data sparsity. This indicates that although next basket recommendation can im-
prove the recommendation effectiveness by fitting actual situation, it is prone to
be affected by data density and is in great instability. All of the above suggest
that the proposed correlative basket booster could promote the model to recom-
mend the next basket. In order to further verify this conjecture, ablation study
is conducted.

4.3 Ablation Study

The performance of BPCL and its variants on all three datasets are shown in
Table 3. BPCL-CL indicates BPCL without contrastive learning, and BPCL-
prototype indicates BPCL adopting contrastive loss without the introduction
of prototype, i.e., Eq. (11). It is clear that the performances of BPCL-CL and
BPCL-prototype are no better than that of BPCL in terms of the four metrics
on all datasets. More specially, sparse data magnifies the advantage, i.e., BPCL
achieves the greatest improvement of performance on Beauty. Although BPCL-
prototype attains better performance than BPCL-CL because of the integration
of contrastive signal, it is still hard to surpass BPCL due to the inevitable loss
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Table 3. Performance of the proposed BPCL and its variants for ablation studies.

HR@K (%) F1@K (×102)
Dataset Model

5 20 5 20

BPCL-CL 3.732 10.02 2.608 2.810
Delicious BPCL-prototype 3.237 10.93 2.202 3.036

BPCLR 3.998 11.35 2.751 3.159

BPCL-CL 0.000 0.000 0.000 0.000
Beauty BPCL-prototype 0.451 1.278 0.192 0.170

BPCL 0.677 1.466 0.280 0.194

BPCL-CL 2.775 4.323 2.785 1.620
Tafeng BPCL-prototype 5.517 7.676 5.626 2.886

BPCL 5.517 7.879 5.631 2.976

of prototype information. We can conclude that the proposed prototype-based
contrastive learning with correlative basket booster promotes the model to rec-
ommend the next basket (RQ2).

4.4 Hyper-Parameter Study

In this section, we analyze three key hyper-parameters of the proposed BPCL
method to answer RQ3, including the correlation latent dimension L, the weight
of contrastive learning λ and the mask threshold µ.

Firstly, we explore how the correlation latent dimension L influences the per-
formance of BPCL and show the results in Fig. 3. It is obvious that BPCL holds
steady performance on the three datasets with different L and keeps a slow lift
on the whole as the increase of L until it reaches 32. The similar performance
of BPCL with L = 32 and BPCL with L = 8 implies that a small correlation
latent dimension is sufficient for embedding the correlation information, which
is consistent with the fact of data sparsity. The performance tends to decrease
when L is larger than 32, which indicates that too large latent dimension makes
it difficult for the model to capture the most valuable information for augmen-
tation.

Next, we investigate how the different combinations of the weight of con-
trastive learning λ and the mask threshold µ in correlative basket booster af-
fect recommendation performance. The λ is tuned among {0.05, 0.1, 0.2, 0.3, 0.4},
while the µ is tuned among {0.5, 0.6, 0.7, 0.8, 0.9}. We adopt heatmaps to show
the results of the proposed BPCL method with different combinations on Beauty
visually, and the results in terms of HR are shown in upper Fig. 4 and the re-
sults in terms of F1 are shown in lower Fig. 4. In general, better performance is
achieved by λ larger than 0.2 with µ = 0.5, suggesting that proper combination
of the weight of contrastive learning and randomness helps the model capture
useful self-supervised signal from prototype to learn better basket sequence rep-
resentation indeed, thus can contribute to overcome the difficulties caused by
sparsity data and get a better next basket recommendation performance.
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Fig. 3. The performance of BPCL with varying correlation latent dimension L. The
left corresponds to HR@K (%) and the right corresponds to F1@K (×102). The x-
axis denotes L varies within the range of {8, 16, 24, 32, 48, 64}, and the y-axis denotes
HR@K (%) and F1@K (×102) respectively.
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Fig. 4. Heatmap of Hit Ratio (HR) and F1 on Beauty. The upper left corresponds to
HR@5 (%), the upper right corresponds to HR@20 (%), the lower left corresponds
to F1@5 (×102), the lower right corresponds to F1@20 (×102). The x-axis denotes λ
varies within the range of {0.05, 0.1, 0.2, 0.3, 0.4}, and the y-axis denotes µ varies within
the range of {0.5, 0.6, 0.7, 0.8, 0.9}. The darker color represents the better performance.

5 Conclusion

In this paper, we propose a new BPCL method that introduces contrastive learn-
ing to next basket recommendation. A correlative basket booster is designed to
make augmentation for baskets, which can mine self-supervised signals from
primitive basket sequences. The augmentations are utilized by prototype-based
contrastive learning for promoting next basket recommendation task. To our best
knowledge, this is the first work to promote learning of prototype representation
through basket augmentation, which helps overcome the difficulties caused by
data sparsity and leads to a better next basket recommendation performance.
The proposed method is verified on three public real-world datasets, and show
the best performance compared with the baseline methods.
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