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Abstract. Popular few-shot Meta-learning (ML) methods presume that
a task’s support and query data are drawn from a common distribu-
tion. Recently, Bennequin et al. [4] relaxed this assumption to propose
a few-shot setting where the support and query distributions differ,
with disjoint yet related meta-train and meta-test support-query shifts
(SQS). We relax this assumption further to a more pragmatic SQS set-
ting (SQS+) where the meta-test SQS is anonymous and need not be
related to the meta-train SQS. The state-of-the-art solution to address
SQS is transductive, requiring unlabelled meta-test query data to bridge
the support and query distribution gap. In contrast, we propose a the-
oretically grounded inductive solution - Adversarial Query Projection
(AQP) for addressing SQS+ and SQS that is applicable when unlabeled
meta-test query instances are unavailable. AQP can be easily integrated
into the popular ML frameworks. Exhaustive empirical investigations on
benchmark datasets and their extensions, different ML approaches, and
architectures establish AQP’s efficacy in handling SQS+ and SQS.
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1 Introduction

Learning Deep neural networks (DNN) from limited training data is of increasing
relevance due to its ability to mitigate the challenges posed by the costly data
annotation process for various real-world problems. A popular framework for
learning with limited training data is few-shot learning, i.e., learning a model
from few shots (examples) of data. Meta-learning (ML) approaches for few-
shot learning have proven to be robust at handling data scarcity [25, 10, 28, 1]. A
typical ML setup follows an episodic training regimen. An episode or a task is an
N -way K-shot learning problem, where N is the number of classes in a task and
K is the number of examples per class. Each task comprises of a task-train data
(support set) and task-test data (query set), containing disjoint examples from
the same classes. Models are adapted separately for the tasks using the support
set. The adapted model’s loss on the query set is used to update the meta-model.

? Equal Contribution
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The model meta-trained in this fashion extracts rich class discriminative features
[14] that can quickly adapt to a new unseen test task.

The ML approach assumes that the meta-train and meta-test tasks are
drawn from a common distribution. The shared distribution assumption pre-
vents the use of meta-learned models in evolving test environments deviating
from the training set. Recent ML works attempt at relaxing this assumption
[30, 27]. However, these ML approaches assume a common distribution inside
the tasks, i.e., the task-train and task-test data come from the same distri-
bution. But a distribution shift may exist between the support and query set
because of the evolving or deteriorating nature of real-world objects or envi-
ronments, differences in the data acquisition techniques from support to query
sets, extreme data deficiency from one distribution, etc. Addressing support
query shift (SQS) inside a task has gained attention very recently [4]. How-
ever, this pioneering work assumes the prior knowledge of SQS in the meta-
test set and induces a related although disjoint SQS in the meta-train set.
The model trained on such a meta-train set is accustomed to handle the SQS
and, to some extent, becomes robust to the related unseen meta-test SQS.

Fig. 1: Performance drop of a ProtoNet model
due to SQS. Case a) No SQS in meta-train/test
set Case b) Related but disjoint SQS in both
meta-train/test sets Case c) Meta-train set
lacks SQS, but meta-test set contains SQS.

In this paper, we consider,
SQS+, a more generic SQS
problem where the prior knowl-
edge of the meta-test SQS
is absent. We expect an un-
known SQS in the meta-test
set and therefore cannot in-
duce any related SQS in the
meta-train set. The earlier
work on addressing SQS [4] is
a limiting case of SQS+.

We illustrate the signif-
icance of SQS+ in Figure
1 on a 5-way 5-shot prob-
lem: Case a) miniImagenet
with No SQS [28] where both
meta-train and meta-test sets
do not contain SQS; Case b)
miniImagenet with SQS [4]
where meta-train and meta-
test sets have related but dis-
joint SQS and Case c) mini-
Imagenet with SQS+ (ours)
where meta-train set lacks
SQS, but meta-test set pos-
sesses SQS. The average per-
formance of a meta-trained
prototypical network (ProtoNet) [25] for the cases (a), (b), and (c) is 64.56%,
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41.68%, and 35.17% respectively. The nearly 29% performance drop from case
a to case c indicates that the naive ML model is vulnerable to SQS and cannot
extrapolate its training experience to comparable scenarios. Bennequin et al., [4]
initiated the research on SQS to address the problem specified in case (b). We
extend it to a more generic an challenging setting where there is no SQS dur-
ing meta-training, but meta-test tasks may contain a distribution shift between
the support and the query sets. The approximately 6% drop in the accuracy of
the ProtoNets trained for settings case b and case c reinforces our challenging
problem setting.

The solution proposed by Bennequin et al., [4] uses optimal transport (OT)
to bridge the gap between support and query distributions, but assumes the
availability of labeled and unlabelled query data during meta-training and test-
ing respectively. While this solution can be adopted for our proposed problem,
access to unlabelled query data during meta-test may be unrealistic in many
real-world scenarios. Our solution to address the support query (SQ) shift prob-
lem - Adversarial Query Projection (AQP), does not require transduction during
meta-testing. During meta-training, we induce a distribution shift between sup-
port and query sets by adversarially perturbing the query sets to create more
“challenging” virtual query sets. New virtual tasks are constructed from the
original support and virtual query sets. Due to the disparity between the initial
and perturbed distributions, a distribution mismatch occurs between the sup-
port and query set of a virtual task. The adversarial perturbations are dynamic
and adaptive, seeking to inhibit the model’s learning. A model trained in such
a setup performs well only if it learns to be resilient to the SQS in a task. As
adversarial perturbations lack a static structure, the model is forced to learn var-
ious shift-invariant representations and thus becomes robust to various unknown
distribution shifts. Overall, we make the following contributions:

– We propose, SQS+, a practical SQS setting for few-shot meta-learning. The
shift between support and query sets during meta-testing is unknown while
meta-training the model.

– We contribute to the FewShiftBed [4] realistic datasets for evaluating meth-
ods that address SQS and SQS+. In these datasets, meta-train data lacks
SQS while meta-test data contains SQS.

– We design an inductive solution for tackling SQS+ using adversarial query
projections (AQP). We theoretically justify the feasibility of meta-optimizing
the model using adversarially projected query sets and verify the existence
of an adversarial query projection for each query set. The AQP module is
standalone and could be integrated with any few-shot ML episodic training
regimen. We verify this capability by integrating AQP into ProtoNet and
Matching Networks (MatchingNet).

– Exhaustive empirical investigation validates the effectiveness of the AQP
on various settings and datasets, preventing a negative impact even in the
absence of SQS.
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2 Related Work

We segregate the discussion of the related work into approaches for cross-domain
few-shot learning and tackling support-query shift in few-shot learning.

2.1 Cross-Domain Few-shot Learning (CDFSL)

Classical few-shot learning (FSL) [7, 15] does not expect distribution shifts be-
tween train and test sets. Domain generalization approaches that generate exam-
ples from a fictitious hard domain through adversarial training [29] or synthesize
virtual train and test domains to simulate a shift during the training process
using a critic network [17] aim to encourage generalization on unseen target
domain. Typical domain generalization setting assumes abundant training data
and shared labels between train and test domains, which need not hold in a
cross domain FSL setup. The early approaches to bridge the domain shifts in
FSL relied on adaptive batch normalization [9] and batch spectral normalization
[19]. Recent work [4] suggests limitations of batch normalization as a strategy
for handling SQS. A common hypothesis among cross domain FSL approaches is
that a model’s over-reliance on the meta-train domain inhibits its generalizabil-
ity to unseen test domains. While some cross domain FSL approaches relied on
model’s generalizability by enhancing diversity in the feature representations [27,
26], others have tried ensembles [20], large margin enforcement [31], and adver-
sarial perturbations [30]. Though these approaches handle domain discrepancy
between meta-train and meta-test sets, they assume a common distribution over
support and query sets. On the other hand, we focus on the scenarios where
support and query distributions vary.

2.2 Support-Query Shift in FSL

Transductive meta-learning approaches that utilize unlabeled query data in the
training process are effective baselines for handling SQS in FSL. Ren et al., [23]
introduce a transductive prototypical network that refines the learned prototypes
with cluster assignments of unlabelled query examples. Boudiaf et al. [6] induce
transduction by maximizing the mutual information between query features and
their predicted labels in conjunction with minimizing cross-entropy loss on the
support set. Minimizing the entropy of the unlabeled query instance predictions
during adaptation [8] also achieves a similar goal. Liu et al., [21] propose a graph
based label propagation from the support to the unlabeled query set that exploits
the data manifold properties to improve the efficiency of adaptation . Antoniou
et al., [2] show that minimizing a parameterized label-free loss function that
utilizes unlabelled query data during training can also bridge SQS. Inspired from
learning invariant representations [12, 3, 11], Bennequin et al. [4] use Optimal
Transport (OT) [22] during meta-training and meta-testing to address SQS.
In contrast, we propose an inductive method to tackle SQS in few-shot meta-
learning where access to the unlabelled meta-test query instances is not required.
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Inductive approaches to tackle train-test domain shifts have relied on ad-
versarial methods for data/task augmentations. Goldblum et al., [13] propose
adversarial data augmentation for few-shot meta-learning and demonstrate the
robustness of the model trained on augmented tasks to adversarial attacks at
meta-test time. Wang et al. [30] bridge the shift between meta-train and meta-
test domains by adversarial augmentation by constructing virtual tasks learned
through adversarial perturbations. A model trained on such virtual tasks be-
comes resilient to meta-train and meta-test domain shifts. While adversarial
perturbations are central to our approach, we use it to tackle a different prob-
lem, support query distribution shifts inside a task for few-shot meta-learning.

3 Methodology

3.1 Preliminaries

Notations A typical ML setup has three phases - meta-trainM , meta-validation
Mv and meta-test Mt. A model is trained on M and evaluated on Mt. Mv is
used for hyperparameter tuning and model selection. The dataset (C,D) com-
prising of classes and domains is partitioned into (CM ,DM ), (CMv

,DMv
), and

(CMt
,DMt

) corresponding to the phases M , Mv and Mt, respectively. Each
phase is a collection of tasks and every task T0 is composed of a support set
TS0 and a query set TQ0 . The support set TS0 = {{xck, yck}Kk=1}Nc=1 and query

set TQ0
= {{x∗cq , y∗cq }

Q
q=1}Nc=1 contain (example x, label y) pairs from N -classes

with K and Q examples per class, with the label of meta-test query instances
being used only for evaluation.

The classical few-shot learning setup does not consider diverse domains. The
tasks are sampled from a common distribution T0. A model meta-trained on
tasks sampled from T0 learns representations that extend to the disjoint meta-
test tasks from the same distribution. Given a task T0 (support-query pair
{TS0 , TQ0}), few-shot learning learns a classifier φ using TS0 , which correctly
categorizes instances of TQ0 . A model parameterized by θ is meta-trained on
a collection of tasks sampled from T0 using a bi-level optimization procedure.
First, θ is adapted on the tasks’ support set TS0

to obtain φ. Then φ is evaluated
on the query set TQ0

to estimate query loss L∗, which is used to update θ. The
model is meta-trained according to the objective min

θ∈Θ
E TQ0

[L∗(φ, TQ0)], where

φ ← θ − α∇θL(θ;TS0
); L and L∗ are the losses of the model on the support

and query sets respectively. Note that ML approaches such as ProtoNet [16] and
MatchingNet [28] do not require adaptation, and hence θ = φ.

Support-Query Distribution Shift In a classical few-shot learning setup,
the domain is constant across M,Mv,Mt phases and within the tasks. So, in
addition to a common distribution T0 over tasks, a shared distribution exists
even at the task composition level, i.e., TS0

= TQ0
, where TS0

and TQ0
are the

distributions on support and query sets respectively. A more pragmatic case is
that of SQS, wherein a distribution mismatch occurs between the support and
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query sets within a task. Let DM and DMt
be the set of domains for the M and

Mt phases. We skip Mv for convenience, but it follows the same characteristics
as M and Mt. We define our version of the support query shift problem termed
SQS+ illustrated in the Figure 1 (case c) as follows.

Definition 1. (SQS+) The support and query sets of every meta-train task
come from the domain DM and share a common distribution TS0

= TQ0
. Let

DMt

S , DMt

Q ∈ DMt
be the support and query domains for a meta-test task. The

SQS+ setting is characterized by an unknown shift in the support and query
domains of a meta-test task, DMt

S 6= DMt

Q (introducing a shift in the support
and query distributions TS0

6= TQ0
), along with the standard SQS assumption of

disjoint meta-train and meta-test domains - DM ∩ DMt = ∅.

Bennequin et al. [4] identified the SQS problem, but assumed only a similar
but disjoint SQS in the meta-train and meta-test datasets. A model learned
on such a meta-train set is compelled to extract shift-invariant features during
adaptation on the support set to reduce L∗ on query sets. Although DM and
DMt

are disjoint, they share a latent structure that facilitates learning of shift-
invariant features on DM that can be extended to DMt

. This makes the learned
model impervious to SQS in the meta-test set. SQS+, on the other hand, is
more general and challenging. We neither anticipate the occurrence of SQS in
the meta-test set nor maintain a common structure between the meta-train and
meta-test SQS’s. Relaxing the shared structure constraint between DM and DMt

removes the need for prior access to the meta-test set (consequently its domains)
to imbibe SQS in meta-train tasks. Hence, we tackle a more challenging problem
of learning a resilient model for an unknown meta-test SQS.

A model trained using the classical ML objective has not encountered support
and query set shifts during meta-training. Thus the learned representations are
not shift-invariant, due to which the model does not generalize to the unknown
meta-test SQS. Bennequin et al.,’s [4] transductive optimal transport (OT)-
based solution to bridge the gap between the support and query shifts could
also be adopted SQS+. However, the solution needs access to unlabeled query
sets during meta-training and meta-testing, which is unavailable in our setting.
We propose an inductive adversarial query projection (AQP) strategy to address
SQS+ that can also work in the vanilla SQS setting.

3.2 Adversarial Query Projection (AQP)

Without leveraging unlabelled meta-test query instances, our solution induces
the hardest distribution shift for the meta-model’s current state. For a task T0,
we simulate the worst distribution shift by adversarially perturbing its query
set TQ0

such that the model’s query loss L∗ maximizes. Let H be the task
composition space, i.e., H is the distribution of support and query distributions
such that TQ0

∼ H and TQ ∼ H. Let TQ0
and TQ be the samples belonging to

TQ0
and TQ respectively (we occasionally denote TQ ∼ H because TQ ∼ TQ ∼ H,

to improve readability). Also, let Θ be the parameter space with θ, φ ∼ Θ, and
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d : H × H → R+ be the distance metric that satisfies d(TQ0
, TQ0

) = 0 and
d(TQ, TQ0

) ≥ 0. We consider a Wasserstein ball B centered at TQ0
with radius

ρ denoted by Bρ(TQ0) such that:

Bρ(TQ0
) = {TQ ∈ H : Wd(TQ, TQ0

) ≤ ρ}

where Wd(TQ, TQ0
) = inf

M∈π(TQ,TQ0
)
EM [d(TQ, TQ0

)] is the Wasserstein distance

that measures the minimum transportation cost required to transform TQ0
to

TQ, and π(TQ, TQ0
) denotes all joint distributions for (TQ, TQ0

) with marginals
TQ and TQ0 .

AQP aims to find the most challenging query distribution TQ for an original
query distribution TQ0

that lies within or on the Wasserstein ball Bρ(TQ0
). The

hardest perturbation to the query distribution TQ0
is the one that maximizes the

model’s query loss L∗. Updating the model using such difficult query distribu-
tion TQ improves its generalizability. Further, the transformation of TQ0 into TQ
induces a distributional disparity in a new virtual task comprising of the original
support set from TS0

and the projected query set from TQ. A model adapted to
such virtual tasks is compelled to extract the shift-invariant representations from
TS0
∼ TS0

transferable to TQ ∼ TQ to reduce the query loss L∗. As adversarial
perturbations are adaptive to the model’s state, they do not have a monotonic
structure throughout the meta-training phase. The evolving augmentations ex-
pose the model to diverse SQS. A model meta-trained on such virtual tasks
with different SQ shifts learns to extract diverse shift-invariant representations
increasing the model’s endurance to unknown meta-test SQS. The simultane-
ous restrain of TQ to a Wasserstein ball radius ρ ensures TQ does not deviate
extensively from TQ0 , and TQ, TQ0 share the label space, and TQ0 , TQ ∈ H is
maintained. Thus the newly-framed meta-objective is:

min
θ∈Θ

sup
Wd(TQ,TQ0

)≤ρ
E(TQ∼ TQ) [L∗(φ, TQ)] (1)

where φ ← θ − α∇θL(TS0
; θ). As equation 1 is intractable for an arbitrary ρ,

we aim to convert this constrained optimization problem to an unconstrained
optimization problem for a fixed penalty parameter γ ≥ 0 as given below:

min
θ∈Θ

sup
TQ

{
ETQ [L∗(φ, TQ)]− γWd(TQ, TQ0

)
}

(2)

We first show that the unconstrained objective is strongly concave and then
define a shift robust surrogate, ψγ(φ, TQ0), that is easy to optimize.

Theorem 1. For the loss function L∗(φ, TQ) smooth in TQ, a distance metric
d : H ×H → R+ convex in TQ and a large penalty γ (by duality small ρ), the
function L∗(φ;TQ)− γd(TQ, TQ0

) is γ − L strongly concave for γ ≥ L.

Proof. Deferred to the supplementary material.

We next define a robust surrogate inspired from Sinha et al., [24] for this
unconstrained objective that is the dual of the minimax problem in equation 1.
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Theorem 2. Let L∗ : Θ × H → R and d : H × H → R+ be continuous. Let
ψγ(φ;TQ0

) = sup
TQ∈H

{L∗(φ, TQ) − γd(TQ, TQ0
)} be a shift robust surrogate. For

any query set distribution TQ and any ρ > 0,

sup
TQ:Wd(TQ,TQ0

)≤ρ
ETQ∼TQ [L∗(φ, TQ)] = inf

γ≥0

{
γρ+ ETQ0

[ψγ(φ;TQ0
)]
}

and for any γ ≥ 0,

sup
TQ

{
ETQ [L∗(φ, TQ)]− γWd(TQ, TQ0

)
}

= ETQ0
[ψγ(φ;TQ0

)]

Using Theorem 2, we arrive at the following surrogate meta-objective:

min
θ∈Θ

{
ETQ0

[ψγ(φ;TQ0
)]
}

(3)

Thus, meta-optimizing the robust surrogate involves maximizing the loss L∗

on adversarial query projections TQ while simultaneously restraining TQ to a ρ
distance from TQ0 . We now show the existence of the adversarial projection for
an original query set using the results from [30, 5].

Theorem 3. Let L∗ : Θ × H → R be L-Lipshitz smooth and d(., TQ0
) be a

µ-strongly convex for each TQ0 ∈ H. If γ >
L
µ

then there exists a unique T̂Q

satisfying

T̂Q = arg Sup
TQ∈H

{L∗(φ, TQ)− γd(TQ, TQ0)} (4)

and
∇θψγ(φ, TQ0

) = ∇θL∗(θ; T̂Q) (5)

Proof. Deferred to the supplementary material.

Remark 1. L∗(φ, TQ)−γd(TQ, TQ0
) is a γ−L/µ strongly concave function for γ ≥

L/µ and so L∗(φ, TQ)− γd(TQ, TQ0) admits one and only one unique maximizer

T̂Q (µ = 1 for Euclidean distance).

Estimation of AQP To find the adversarial query projection, we approximate
equation 4 by employing gradient ascent with early stopping on the query set.
We consider a task T0 = {TS0

∪TQ0
} and let {X,Y } and {X∗, Y ∗} be the set of

all instance-label pairs in TS0
and TQ0

, respectively. We propose algorithm 1 to
induce SQS in the meta-train tasks. The original query instances X∗ initialize
the worst-case query augmentations X∗w. We perform an iterative gradient ascent
on X∗ using L∗, resulting in an augmented query set X∗w. This augmented query
set X∗w has distributional disparity with original support set X. Early stopping
by Adv iter and initializing X∗w with X∗ regularizes (−γd(TQ, TQ0

)) and ensures
X∗w does not deviate extensively from X∗. The algorithm returns a virtual task
with original support X and projected query X∗w, which is used to update θ.
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Algorithm 1: Adversarial Query Projection AQP (TS0
, TQ0

)

Input: Task Support and Query Sets - (TS0
= {X,Y }, TQ0

= {X∗, Y ∗}),
model parameters φ
X∗w ← X∗

for i = 0 to Adv iter do
X∗w ←− X∗w + η∇X∗

w
L∗i (φ,X

∗
w)

end
TQ = {X∗w, Y ∗}
return (TS0

∪ TQ)

4 Experiments and Results

We design experiments to investigate the challenging nature of our proposed
SQS+ benchmark and empirically validate the efficacy of the proposed AQP
over the state-of-the-art approach [4] to address SQS in inductive settings. We
consider Cifar 100, miniImagenet, tieredImagenet, FEMNIST, and their state-
of-the-art SQS variants for evaluation. We also demonstrate the AQP’s efficiency
on our proposed datasets (introduced in section 4.1 and elaborated in the supple-
mentary material). We used Conv4 models [4] for Cifar 100, FEMNIST and their
variants, and ResNet-18 [16] for miniImagenet, tieredImagenet, and their exten-
sions. We use 32×32 images for Cifar 100, 28×28 for FEMNIST, and 84×84 for
miniImagenet and tieredImagenet. We next present the implementation details,
followed by the contributions to FewShiftBed and empirical investigations.

4.1 Implementation Details

Following [4], we fix the meta-learning rate as 0.001 for all approaches (Ind OT,
AQP), models (ProtoNet, MatchingNet), and datasets (Cifar 100, miniImagenet,
tieredImagenet, FEMNIST, and their variants) and learn the models for 60,000
episodes. We perform a grid search using Ray over 35 configurations for 12000
episodes to find the optimal hyper-parameters. The search space is shared for
all approaches, datasets, and models. The hyper-parameters of regularization in
Ind OT and AQP’s adversarial learning rate are sampled from log uniform distri-
bution in the ranges [15, 50] and [0.001, 1.0], respectively. Further, the number of
iterations required to project data in AQP and Ind OT iterations are randomly
sampled from ranges [2,9] and [500, 1500] (increments of 100), respectively. How-
ever, for Ind OT, we obtained better results on default hyper-parameters than
tuned ones on miniImagenet and its SQS variants. So we fixed its parameters
as mentioned in [4] for all the cases. We report the hyper-parameters (learning
rate (η) and number of iterations (Adv iter)) for AQP in table 1.

4.2 Contributions to FewShiftBed

We make significant contributions to the FewShiftBed [4]. Firstly, we have cre-
ated challenging datasets wherein SQS is present only at meta-test time (SQS+).
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Table 1: Hyperparameter details of AQP for different datasets and approaches.

Dataset
ProtoNet MatchingNet

No SQS SQS SQS+ No SQS SQS SQS+
η Adv iter η Adv iter η Adv iter η Adv iter η Adv iter η Adv iter

Cifar 100 22.0 4 31.0 3 22.0 4 22.0 4 31.0 3 32.0 2
miniImagenet 22.0 4 31.0 3 22.0 4 22.0 4 41.0 8 24.5 5
tieredImagenet 22.0 4 17.0 4 22.0 4 22.0 4 41.0 9 22.0 4
FEMNIST 22.0 4 16.5 2 24.0 2 22.0 4 25.8 5 30.0 8

The SQS+ versions of Cifar 100, miniImagenet, and tieredImagenet datasets are
constructed from their SQS counterparts [4] by removing perturbations from
the meta-train datasets. Similarly, the SQS+ variant of FEMNIST also follows
its SQS counterpart, but the meta-train set contains alpha-numerals from users
randomly. We add these SQS+ versions of benchmark datasets to the testbed.
The perturbations applied to the tasks are entirely modular, i.e., a task may have
augmentation in support, query, both, or none. More details about the datasets
are available in the supplementary material. Secondly, we integrate our theoret-
ically grounded inductive solution, Adversarial Query Projections (AQP), into
the testbed. The AQP implementation is standalone and can be integrated with
any episodic training regimen. We have successfully integrated AQP with ML
approaches like Prototypical and Matching networks [25, 28]. Thirdly, we have
also added a hyperparameter optimization module that uses RAY [18] for tun-
ing parameters. We believe these additions improve the usability and coverage
of FewShiftBed to study SQS. The modified FewShiftBed, which includes the
proposed solution, datasets, and experimental setup, is publicly available. 3

4.3 Evaluation of SQS+

We first validate that SQS+ is more challenging than the SQS problem [4]. We
train Prototypical and Matching networks on Cifar 100, miniImagenet, tiered-
Imagenet, and FEMNIST on all three settings - No SQS, SQS, and SQS+. We
report the results in Table 2 and observe that for all the datasets, models trained
with both the approaches (Prototypical and Matching network) perform best
in the No SQS setting, followed by SQS and SQS+. In the classical few-shot
setting, meta-train and meta-test phases share the domain, due to which the
meta-knowledge is easily transferable across the phases. However, in SQS, each
task’s support and query set represent different domains, but share a latent
structure, during the meta-train and meta-test phases. In SQS versions of Cifar
100, miniImagenet, and tieredImagenet, both meta-train and meta-test SQS are
characterized by different types of data perturbations. However, in FEMNIST’s
SQS variant, meta-train and meta-test SQS is induced due to different writers.
A meta-model trained in this setup becomes partially resilient to the related but
disjoint SQS during meta-testing. A common SQS structure across meta-train

3 https://github.com/Few-Shot-SQS/adversarial-query-projection
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Table 2: Comparison of ML methods with their Ind OT and AQP counterparts
across Cifar 100, miniImagenet, tieredImagenet, FEMNIST datasets, and their
SQS and SQS+ variants. The results are obtained on 5-way tasks with 5 support
and 8 query instances per class except for FEMNIST and its variants, which
contains only one support and one query instance per class. The ± represents
the 95% confidence intervals over 2000 tasks. AQP outperforms classic, and
Ind OT-based ML approaches approximately on all datasets.

Method
Test Accuracy

No SQS SQS SQS+ No SQS SQS SQS+

Cifar 100 miniImagenet

ProtoNeT 48.07 ± 0.44 43.15 ± 0.48 40.59 ± 0.69 64.56 ± 0.42 41.68 ± 0.76 35.17 ± 0.78
Ind OT+
ProtoNeT

48.62 ± 0.44 43.62 ± 0.49 41.74 ± 0.65 63.74 ± 0.42 39.84 ± 0.78 34.75 ± 0.80

AQP+
ProtoNeT

48.70 ± 0.42 45.09 ± 0.46 45.06 ± 0.46 66.81 ± 0.42 42.65 ± 0.57 40.61 ±0.60

MatchingNet 46.03 ± 0.42 39.89 ± 0.44 36.63 ± 0.45 59.68 ± 0.43 39.66± 0.54 35.40 ±0.52
Ind OT+

MatchingNet
45.77 ± 0.42 40.82 ± 0.45 37.13 ± 0.47 59.64 ± 0.44 38.25± 0.54 33.22± 0.50

AQP+
MatchingNet

46.53 ± 0.43 42.40 ± 0.46 41.26 ± 0.46 62.29 ± 0.42 42.32 ± 0.52 37.90 ± 0.53

tieredImagenet FEMNIST

ProtoNeT 71.04 ± 0.45 41.59 ± 0.57 38.57 ± 0.65 93.09 ± 0.51 84.36 ± 0.74 82.67 ± 0.77
Ind OT+
ProtoNeT

69.56 ± 0.46 40.08 ± 0.56 35.81 ± 0.58 91.66 ± 0.55 79.64 ± 0.80 76.37 ± 0.84

AQP+
ProtoNeT

69.62 ± 0.45 45.34 ± 0.60 40.94 ± 0.66 94.61 ± 0.45 85.92 ± 0.69 84.42 ± 0.74

MatchingNet 67.85 ± 0.46 43.30 ± 0.56 37.57 ± 0.57 93.69 ± 0.49 85.88 ± 0.69 83.48 ± 0.74
Ind OT+

MatchingNet
67.79 ± 0.46 44.27 ± 0.56 39.24 ± 0.59 93.76 ± 0.48 84.08 ± 0.71 83.09 ± 0.74

AQP+
MatchingNet

68.40 ± 0.45 45.26 ± 0.56 39.39 ± 0.58 93.69 +- 0.49 87.24 ± 0.67 84.98 ± 0.72

and meta-test sets may not exist. Thus, SQS+ datasets are more challenging,
which is empirically validated by the baseline approach’s poor performance.

4.4 Evaluation of AQP

We compare the efficiency of the proposed AQP and optimal transport (OT)
based state-of-the-art solution for handling vanilla SQS and SQS+ on the bench-
mark datasets. A strong baseline for SQS+ is the inductive version of OT
(Ind OT), where we employ OT only in the meta-train phase to generate pro-
jected support sets using support and query instances of a task. We evaluate
ProtoNet and Matching Networks versions of Ind OT and AQP. Table 2 presents
the results for this evaluation. We observe that the models learned on projected
support data obtained by Ind OT are less robust to both SQS and SQS+ than
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the models learned on AQP for all approaches and datasets. Hence, AQP is bet-
ter at addressing SQS+ (and SQS), when meta-test unlabeled query instances
are unavailable.

To inspect whether the proposed AQP negatively impacts the models’ gen-
eralization in the absence of meta-test SQS, we evaluate the ML approaches and
their Ind OT and AQP counterparts on classic datasets containing no support
query shifts (No SQS). We observe from Table 2 that AQP does not lead to
degradation in the performance in the absence of SQS, instead improves the
generalizability of the model even when SQS is absent. We note that Ind OT
sometimes deteriorates the model’s performance when SQS is missing. AQP out-
performs both classic methods and their Ind OT versions in almost all cases.
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Fig. 2: Impact of adversarially projecting support and query data in a task on
the model’s performance across No SQS and SQS and SQS+ variants of Cifar
100, miniImagenet, tieredImagenet, and FEMNIST datasets.

Following [4], we used a Conv4 backbone for Cifar 100, FEMNIST and their
transformations, and a ResNet-18 [16] backbone for miniImagenet, tieredIma-
genet, and their variants. Thus, Table 2 not only shows the robustness of a
model trained via AQP on different SQ shifts but also its thoroughness across
architectures. We randomly projecting 25% of the tasks with AQP to reduce the
computational cost. Extending this idea to Ind OT, resulted in a significant de-
cline in the performance. We thus maintain the standard-setting [4] for Ind OT,
wherein support sets of all the tasks are projected.
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4.5 Ablations

We perform ablations to investigate the sensitivity of the proposed approach
to task characteristics (varying number of support and query shots) and design
choices (support vs query projections).

Ablation on Projections We study the impact of adversarially perturbing
support vs query set in a task and evaluate the model’s (ProtoNet) performance
across all settings and datasets. From Figure 2 we observe perturbing query sets
is empirically more meritorious in 9 out of 12 settings. We measure the model’s
generalizability from in-distribution support to out-of distribution (OOD) query
set in a task by perturbing a query set. The magnitude of loss and hence gradi-
ents on the OOD query set is high, resulting in more meaningful meta-updates.
As performance on the query set directly impacts the meta-update, the model’s
invariance to SQS is directly reflected in the meta-update. On the other hand,
projecting support sets creates potent prototypes (robust adaptation) as ad-
versarial projections distort the images. However, the meta-update may not be
impactful due to the model’s good performance on clean query images.
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(a) Ablation on support instances.
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(b) Ablation on query instances.

Fig. 3: Ablation on the number of support and query instances per class on SQS
and SQS+ variants of Cifar 100 and miniImagenet datasets. In (a), we consider
5-way tasks with 1 and 5 support instances with 16 query instances. In (b), we
vary query instances between 8 and 16 with 5 support instances per class.

Ablation on Support and Query Shots We ablate the number of shots
per class in the support and query sets, limited to Cifar 100 and miniImagenet
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datasets, to inspect the efficacy of our proposed AQP employing a ProtoNet.
AQP outperforms Ind OT when the number of query instances are fixed to 16
per class, and support shots per class vary from 1 to 5 (Figure 3a). We also vary
the number of query instances per class from 8 to 16 and observe that AQP
surpasses Ind OT with varying query instances (Figure 3b).

4.6 Visual Analysis of AQP

We visualize the impact of AQP on the query instances across meta-training
iterations. We train a Prototypical network in a 5-way 5-shot setting on the
SQS+ version of miniImagenet for 150 epochs. Extended results on No SQS and
SQS versions of miniImagenet are presented in the supplementary material. For
better illustration, we fix one task and one instance per class and show the trans-
formation in the query images over meta-train iterations (Figure 4). The images
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After Adversarial Projection Change Mask

Fig. 4: Evolution of Adversarial Query Projections across training epochs for
SQS+ version of miniImagenet.

in the top row are the original query set, the left column are the query images
impacted by AQP with increasing iterations, and the right column represents
the change mask (in the increasing order of iterations), which is the difference
between the pixel intensities of the original image and its adversarially perturbed
counterpart. We observe gradual increase in the distortions with increasing iter-
ations. This in turn makes the model robust to query instances’ degradation and
thus to the distribution shifts between support and query. As AQP is adaptive
and seeks to inhibit the model’s learning, it increases the degradation in the
query images to maximize the query loss with increasing iterations. This shows
that following an easy to hard curriculum to distort the query contributes to
AQP’s success.
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However, this experiment also reflects the potential limitations of the pro-
posed AQP. We evaluated AQP in the cases where SQS is characterized by the
perturbations in data (SQS variants of Cifar 100, miniImagenet, and tieredIm-
agenet), and for a small-realistic dataset (FEMNIST and its variants) where
different writers characterize SQS. The masks (Figure 4) reflect that AQP adds
varying noise to distort the images, which may not resemble complex SQ shifts.
Investigating AQP in more complex SQ shifts, e.g., real to sketch or caricature
pictures, is part of our future work.

5 Conclusion and Future Directions

This paper proposes SQS+ - a more challenging distribution shift between the
support and query sets of a task in a few-shot meta-learning setup. SQS+ in-
cludes an unknown SQ shift in the meta-test tasks, and empirical evidence sug-
gests SQS+ is a complex problem than the prevalent SQS notion. We propose
a theoretically grounded solution - Adversarial Query Projection (AQP) to ad-
dress SQS+ without leveraging unlabelled meta-test query instances. Exhaus-
tive experiments involving AQP on multiple benchmark datasets (Cifar 100,
miniImagenet, tieredImagenet, and FEMNIST - their SQS and proposed SQS+
variants), different architectures, and ML approaches demonstrate its effective-
ness. The future work lies in verifying the effectiveness of AQP in complex SQ
shifts, e.g., shift from real to sketch images and creating datasets corresponding
to these difficult SQ shifts, and integrating AQP with gradient and transduc-
tive ML approaches. We incorporate proposed AQP and SQS+ versions of Cifar
100, miniImagenet, tieredImagenet, and FEMNIST to FewShiftBed and make it
publicly available to encourage research in this direction.

Acknowledgements The resources provided by ‘PARAM Shivay Facility’ un-
der the National Supercomputing Mission, Government of India at the Indian
Institute of Technology, Varanasi are gratefully acknowledged.

References

1. Aimen, A., Sidheekh, S., Ladrecha, B., Krishnan, N.C.: Task attended meta-
learning for few-shot learning. In: Fifth Workshop on Meta-Learning at the Con-
ference on Neural Information Processing Systems (2021)

2. Antoniou, A., Storkey, A.J.: Learning to learn by self-critique. Advances in Neural
Information Processing Systems (2019)

3. Ben-David, S., Blitzer, J., Crammer, K., Pereira, F.: Analysis of representations
for domain adaptation. Advances in Neural Information Processing Systems (2006)

4. Bennequin, E., Bouvier, V., Tami, M., Toubhans, A., Hudelot, C.: Bridging few-
shot learning and adaptation: New challenges of support-query shift. In: Joint Eu-
ropean Conference on Machine Learning and Knowledge Discovery in Databases.
pp. 554–569 (2021)

5. Bonnans, J.F., Shapiro, A.: Perturbation analysis of optimization problems.
Springer Science & Business Media (2013)



16 A. Aimen et al.

6. Boudiaf, M., Ziko, I., Rony, J., Dolz, J., Piantanida, P., Ben Ayed, I.: Information
maximization for few-shot learning. In: Advances in Neural Information Processing
Systems. pp. 2445–2457 (2020)

7. Chen, W., Liu, Y., Kira, Z., Wang, Y.F., Huang, J.: A closer look at few-shot
classification. In: International Conference on Learning Representations (2019)

8. Dhillon, G.S., Chaudhari, P., Ravichandran, A., Soatto, S.: A baseline for few-
shot image classification. In: International Conference on Learning Representations
(2020)

9. Du, Y., Zhen, X., Shao, L., Snoek, C.G.: Metanorm: Learning to normalize few-shot
batches across domains. In: International Conference on Learning Representations
(2020)

10. Finn, C., Xu, K., Levine, S.: Probabilistic model-agnostic meta-learning. In: Ad-
vances in Neural Information Processing Systems (2018)

11. Flamary, R., Courty, N., Tuia, D., Rakotomamonjy, A.: Optimal transport for do-
main adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence
(2016)

12. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation.
In: International Conference on Machine Learning. pp. 1180–1189 (2015)

13. Goldblum, M., Fowl, L., Goldstein, T.: Adversarially robust few-shot learning: A
meta-learning approach. In: Advances in Neural Information Processing Systems
(2020)

14. Goldblum, M., Reich, S., Fowl, L., Ni, R., Cherepanova, V., Goldstein, T.: Unrav-
eling meta-learning: Understanding feature representations for few-shot tasks. In:
International Conference on Machine Learning. pp. 3607–3616 (2020)

15. Guo, Y., Codella, N., Karlinsky, L., Codella, J.V., Smith, J.R., Saenko, K., Rosing,
T., Feris, R.: A broader study of cross-domain few-shot learning. In: European
Conference on Computer Vision. pp. 124–141 (2020)

16. Laenen, S., Bertinetto, L.: On episodes, prototypical networks, and few-shot learn-
ing. Advances in Neural Information Processing Systems (2021)

17. Li, Y., Yang, Y., Zhou, W., Hospedales, T.M.: Feature-critic networks for hetero-
geneous domain generalization. In: International Conference on Machine Learning.
pp. 3915–3924 (2019)

18. Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J.E., Stoica, I.: Tune:
A research platform for distributed model selection and training. arXiv preprint
arXiv:1807.05118 (2018)

19. Liu, B., Zhao, Z., Li, Z., Jiang, J., Guo, Y., Ye, J.: Feature transformation ensemble
model with batch spectral regularization for cross-domain few-shot classification.
arXiv preprint arXiv:2005.08463 (2020)

20. Liu, B., Zhao, Z., Li, Z., Jiang, J., Guo, Y., Ye, J.: Feature transformation ensemble
model with batch spectral regularization for cross-domain few-shot classification.
arXiv preprint arXiv:2005.08463 (2020)

21. Liu, Y., Lee, J., Park, M., Kim, S., Yang, E., Hwang, S.J., Yang, Y.: Learning
to propagate labels: Transductive propagation network for few-shot learning. In:
International Conference on Learning Representations (2019)
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