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Abstract. Interpretability is becoming an expected and even essential
characteristic in GDPR Europe. In the majority of existing work on
natural language processing (NLP), interpretability has focused on the
problem of explanatory responses to questions like “ Why p?” (identifying
the causal attributes that support the prediction of "p.)” This type of
local explainability focuses on explaining a single prediction made by a
model for a single input, by quantifying the contribution of each feature
to the predicted output class. Most of these methods are based on post-
hoc approaches. In this paper, we propose a technique to learn centroid
vectors concurrently while building the black-box in order to support
answers to “Why p?” and “Why p and not q?” where “q” is another
class that is contrastive to “p.” Across multiple datasets, our approach
achieves better results than traditional post-hoc methods.

Keywords: Interpretability - NLP - Text classification.

1 Introduction

Research on making deep learning models more interpretable and explainable
is receiving much attention. One of the main reasons is the application of deep
learning models to high-stake domains. In general, interpretability is an essential
component for deploying deep learning models. Interpretability in the context
of deep learning can be used to tackle a variety of problems: (i) the detection
of biased views in a deep learning model, (ii) evaluation of the fairness of a
deep learning model, (iii) faithfully explaining the predictions of the classifier,
i.e., the construction of accurate explanation that explains the underlying causal
phenomena [13] and (iv) the use of explanations as a proxy for model debugging,
which allows researchers/engineers to construct models better or debug existing
models. Non-linear deep neural networks come at the cost of model interpretabil-
ity. Most existing related research has focused on identifying feature attribution
(e.g., possible causal attributes) to explain the prediction of a black-box neu-
ral network. This type of explanation is defined as answers to “why-questions.”
“ Why-questions,” are generally thought of as causal-like explanations [11]. Ex-
isting techniques to why-questions rely on using a post-hoc approach to identify
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the causal attributes for a single black-box prediction. Post-hoc methods gener-
ally do not always provide accurate explanations [20]. There are many possible
reasons for this limitation; for instance, feature attributions typically suffer from
noisy gradients in back-propagation techniques [8]. Studies in philosophy and
social science show that humans, in general, prefer contrastive explanations, i.e.,
the explanation of an event is based on explaining the fact (p) in contrast to
another event (gq) [16,12]. Here “p” represents the model prediction, and “¢”
represents an alternative class we would use for a contrastive explanation. A
contrastive explanation is an essential property of an explanation: 1) humans
ask a contrastive question when they are surprised by an event and expect a
different outcome, and 2) the contrastive event is what they expect to happen
[12, 16, 7]. Majority of existing post-hoc techniques are only limited to providing
answers to "why p?" and cannot provide answers to "why p and not ¢?". For
instance, gradient-based methods. Contrastive explanations are relatively new
in NLP [9]. Our work focuses on building an inherently interpretable model that
can support answers to both kinds of questions: “why p?,” and “why p, not ¢?.”
In general, a contrastive explanation provides an explanation for why an instance
had the current output (fact) rather than a targeted outcome of interest (foil)
[25]. An example of our proposed neural network model is shown in Figure 1.
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Fig. 1. An example of the proposed neural network model with answers to "why p?"
and "why p and not ¢?" questions. Here we visualize the top salient attributes.

1.1 Contrastive vs. Counterfactual

The evolving discussions of explainable AI (XAI) have articulated several dis-
tinguishing aspects of explanation (e.g., [16]), including a difference between
contrastive (e.g., what made the difference between the students who failed the
exam and those who did not fail?) and counterfactual (e.g., will we reduce climate
change if we reduce fuel consumption?) explanations. Contrastive explanations
are different from counterfactual explanations [15]. In general, contrastive and
counterfactual reasoning emphasize different aspects of causation[5]. In counter-
factual reasoning, we focus on instances in which the salient causal attributes
are absent (missing from the text). In contrast, in a contrastive explanation
(our focus here), one considers the difference in attributes between two predic-
tions. The difference between the two approaches is in the knowledge support
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required for the explanation. For instance, a counterfactual explanation focuses
on the question of “ What if ?,” while a contrastive explanation focuses on “the
difference.”

The contributions of this paper can be summarized as follows: (i) we propose
an interpretable (intrinsic) neural model that focuses on learning deep discrim-
inative embedding features, (ii) our neural model provides two types of expla-
nations (e.g., non-contrastive explanations and contrastive explanations) using
feature attribution, and (iii) we proposed a metric to evaluate the quality of the
contrastive explanations. An intrinsic neural model is better than using tradi-
tional post-hoc explanations because: (i) we can find faithful explanations, (ii),
we do not need an additional complex computation to find an explanation for a
single prediction.

2 Related work

2.1 Contrastive explanations

With contrastive explanations, we aim to expose an alternative to any given
model prediction. In [9], they proposed a post-hoc approach that relies on a pro-
jection matrix to devise explanations. Similarly, [18] used SHAP to generate a
contrastive explanation. Our approach is different; we propose an intrinsic neural
model which supports answers to "why p?" and "why p and not ¢?" questions,
rather than relying on post-hoc approaches. In the context of contrastive expla-
nations, we focus on finding the difference in the attributes that could distinguish
the prediction "p" from the foil "¢."

2.2 Counterfactual explanations

Counterfactual explanations consist in generating text as a counterfactual exam-
ple. In general, counterfactual explanations seek to identify a minimal change in
model data that “flips” a predictive model’s prediction, which is used for expla-
nation. [26] proposed the concept of unconditional counterfactual explanations
and introduced a framework for generating counterfactual explanations. For text
classification, [29] proposed a method to generate counterfactual text from a pre-
trained model for the finance domain. In addition, [6] relied on finding evidence
that is discriminative for the target class but not present in the foil class to learn
a model to generate counterfactual explanations for why a model predicts class
“p” instead of “q.” However, their approach was mainly designed for computer
vision.

2.3 Post-hoc non-contrastive explanations

One of the most popular techniques for explaining the prediction of a black box
is the use of why p?. There is much prior work on this topic. For instance, [3] used
Shapley approximation and proposed two methods, namely L-Shapley and C-
Shapley. Additionally, [22] proposed the integrated gradient method, which relies
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on using a back-propagation algorithm. Other methods also rely on perturbation
techniques such as [19]. Some methods focus on constructing interpretable neural
architecture for classification. For instance, [2]’s model learn a rationale as the
model’s explanation. In general, our approach is different from traditional post-
hoc and rationale-based models. We provide two types of explanations using an
intrinsic neural model i.e., answers to "why p? and why p and not ¢?" questions.
Overall, our work is not the first contribution to contrastive explanation nor the
first technique for "why p?" questions. In [1], authors proposed a knowledge
distillation technique which could learn an interpretable vector space model.
However our work is different, we focus on building an intrinsic model which can
support answers to why p and and why p?and why p and not q? questions.

3 Contrastive explanation generation

Our approach is not a post-hoc technique for model’s explanation but rather the
pursuit of constructing an inherently interpretable neural network. Our intrinsic
neural model relies on improving the embedding features (see Figure 2.) For a
given class in the dataset, our network attempts to assign similar texts into a
single cluster.
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Fig. 2. Our proposed intrinsic neural architecture focuses on clustering texts based on
the model predictions. For each class, we define a centroid vector. During training, we
used our proposed method to establish a similarity structure between the sentences
and the corresponding centroid vector.

3.1 Neural nets with feature attributions and contrastive
explanations

We propose a multi-task neural network architecture, i.e., a classification task
and an explanation task. We jointly optimize the network for both classifications
and faithful explanations. For notation, we denote scalars with italic lowercase
letters (e.g., x), vectors with bold lowercase letters (e.g., x), and matrices with
bold uppercase letters (e.g., W). In the text classification task, an input se-
quence g, To,...,x; € R% where [ is the length of the text input and d is the
vector dimension, is mapped to a distribution over class labels using a parame-
terized neural network (e.g., a Multi-head attention). In general, the contextual
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vector b € R? is passed to a linear layer with parameters W € R¥*™ which
provides a probability distribution over n classes. The output y is a vector of
class probabilities of dimension R™, where n is the number of classes. The pre-
dicted label p of the text input is the index of the maximum element in y, i.e.,
p = argmazf(x), Vk € [1,n]. Here, k iterates over the probabilities and f(x)
denotes a neural network. During training, an empirical loss (e.g., cross-entropy)
J(p,y ,0) is minimized using gradient descent, where 3 is the ground truth label
and 6 represents the network’s parameters. We propose to augment the network
to provide two types of explanations “ Why p?” and “ Why p and not ¢?.” To do
so, we first define a randomly initialized centroid vector for each class, and then
use the centroid vector as a proxy to explain the black-box prediction.

For instance, if the neural network’s prediction is class 1, we use the centroid
vector representing that class to calculate the the scores for why p?. For con-
trastive explanation, we find the difference between the scores of the centroid
vector representing the predicted class and the scores of the centroid vector rep-
resenting the contrast class (e.g., the centroid vector for class 2). The centroid
vector of label p pulls the weighted sentence vector of the text input @, xo, ..., x;
closer. In the following, we discuss the steps for augmenting a neural network
with the centroid vectors. Let ¢;(j = 1,2, ...,n) be a collection of randomly ini-
tialized centroid vectors, where ¢; € R is a vector representing label y;. We
propose a new objective function, namely centroid-loss, to explain the neural
network predictions effectively. Our solution enhances the discriminative power
of the deeply learned features in neural networks. Specifically, we learn a centroid
¢; (a vector with the same dimension as an embedding feature) of each class. In
the course of training, we simultaneously update the centroid vector and min-
imize the distances between the embedding features and their corresponding
class’ centroid vector.

3.2 Joint objective

Recall that a supervised learning algorithm input is a set of training instances
and the corresponding label. The goal is to learn a function that accurately maps
input examples to their desired labels using cross-entropy. Given the prediction
p, we learn ¢, € R? to pull the sentence vectors representing class p closer. Intu-
itively, we are minimizing the intra-class variations while keeping the features of
different classes separable. In the following, we discuss the optimization objective
of our proposed network.

Cross-entropy: term 1 in the optimization objective function is the standard
loss function for classification. We denote this loss as £,

Attractive term: term 2 focuses on minimizing the cosine distance between
the sentence vector and the corresponding c,. Let X be a matrix consisting of
embedding vectors [z, T, ..., ;] and the sentence vector of X is & € RY. Let,
w € R! be the importance scores, where each.

_ T+ T
;= o E (1)
AN
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where w; is the importance score of word 7, and & is the sentence vector of the
input X. Term 2 minimizes the cosine distance between the weighted sentence
vector & of each input with the corresponding centroid vector ¢,. The sentence

vector is defined as follows:
_ exp(w)
z=X (z) (2)
Zi:l exp(w;)

From equation 2, we obtain the weighted sentence vector through multiplying
the values in the i-th row of X by w; followed by calculating the sentence vector
x € R?. We define the loss of term 2 as follows:

Eattr - 1= ?7'7011 (3)
2] llep |l
Term 2 is the second loss of our proposed optimization objective.

Repulsive term: term 3 (the third term in the overall loss function) focuses
on maximizing cosine distance of & from other centroid vectors, i.e., ¢;, where
j # p, so that cosine distance between them is maximum. We call this term
“repulsive loss” similar to [27] we denote the loss as Lyep.

Pairwise term: term 4 in our objective maximizes the pairwise distance
matrix of the centroid vectors. For the distance we proposed to use the squared
euclidean distance and we denote the loss as Lpair.

Overall loss: is defined as

L= L:cls + (Alﬁattr) _ ()\zﬁrep) _ (Agﬁpair) (4)

where (A1, A2, A\3) are the coefficients. The hyper parameters (A1, Az, A3) are im-
portant for minimizing the intra-class variation (to minimize the variance within
the same class). More specifically, terms 3 and 4 focus on keeping the features
of different classes separable, and term 2 focuses on minimizing the intra-class
distances. All of them are essential to our model. We refer to the combination
of the new added terms as the centroid loss, i.e., term 2, term 3, and term 4.

3.3 Explanations

We seek to identify a feature with a causal impact on the model prediction de-
cision process. We follow [28]’s definition of intervention: an intervention is an
idealized experimental manipulation carried out on some variable & which is
hypothesized to be causally related to changes in some other variable p. Any
intervention on the text input using attributions on the prediction p is a causal
process that changes the model prediction. Therefore, if the intervention changes
the model prediction, it is probably due to the adjustment in the causal space
of the text input. We will use the idea of “intervention” to understand the effec-
tiveness of our approach for both why p? and why p and not ¢%.

Why p? For this type of explanations, we identify potential causal attributes
by calculating the cosine similarity between each x; and the corresponding ¢,
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of class p. A higher score indicates a more informative attribute. The negative
scores indicate the features have negatively contributed to the specific class clas-
sification and vice-versa. For experiments, we intervene on the text input to
remove irrelevant attributes, i.e., replacing each factor with a “<pad>” followed
by observing the change in the model’s probabilities.

Why p and not q?: Given any text instance, a classifier predicts p and a
centroid vector ¢,. A p-contrast question is of the format ‘Why [predicted-class
(p)] not [desired class (¢q)]?’. By specifying the desired class, we limit our search
space to a single alternative. Given the text input, we estimate attribution scores
for "p" using c,. For the desired class ¢, we calculate the attribution scores of
the text input using c,. Please note that, here we also use cosine similarity.
We find the attribution scores for contrastive explanations as z. = z, — zg,
where z, is the attribution score for the predicted class p obtained using ¢, and
z4 is the attribution scores for the foil class ¢ obtained using c,.We follow the
intervention approach as in “ Why p?” to find the candidate attributes for the
contrastive explanation.

4 Experiments

To effectively evaluate our approach, we devise a measure to rank the identified
causal attributes. Given a prediction “p,” for “why p,” we rank each attribute
by how much it contributes to prediction “p” using c,. As for contrastive ex-
planations, we rank each attribute using z by how contrastively useful it is to
the model for choosing “p” against “¢.” All evaluations follow an interventionist

approach defined in Section (3.3).

4.1 Setup

Datasets. We adopt the IMDB datasets [14] (train:25000, test:25000 samples)
with binary labels, AG news [30](train:102080, test:25520 samples) with four
classes, and YELP reviews [23] (train:110400, test:27600 samples) with binary
labels. We hold out 10% of the training examples as the development set. We
limit the length of the input to 50 for YELP and IMDB and 20 for AG news.

Model. The multi-head model [24] includes an embedding layer and multi-
head attention layers. We tokenized sentences and randomly initialized the em-
bedding layer and the centroid vectors. The dimension of the word embedding,
centroid vector, and feature vector (at the output layer) is 128. For training
the network, we use the Adam optimizer [10] with a batch size of 256 and a
learning rate of 0.0001 (We have experimented with different values for the
coefficient with interval 5 between 0 and 1000, for the experiments we used
(A1 : 1000, A2 : 10, A3 : 1000). The Fl-scores for AG news topic classification,
IMDB sentiment, and YELP review classification are summarized in Table 1.
Performance is in terms of F1-score.
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Table 1. Black-box(Multi-head) vs. intrinsic Multi-head neural network.

Models Dataset
IMDB YELP AG news
Black-Box(Multi-head) 0.81 0.88 0.89

Proposed (Multi-head with centroid loss) 0.81 0.88 0.89

4.2 Explainability metrics

We adopt three metrics from prior work on evaluating word-level attribution
(non-contrastive explanation): the area over the perturbation curve (AOPC)
from ERASER [4], the log-odds scores [21, 3], and the degradation score to the
trained model accuracy [17]. We also proposed new evaluation metrics for con-
trastive explanations. All the metrics measure the local fidelity by deleting or
masking top-scored words.

4.3 Evaluating Why p?

We begin first by evaluating the faithfulness of “ Why p?” questions. Faithfulness
means the degree (trust of an explanation) to which an explanation influences
the model prediction. ERASER proposes two metrics to measure the quality of
the explanations:

Comprehensiveness: Measure whether all required features by the model
to make a prediction are selected by the explanation method. To use this metric,
we first need to compute a new sentence. For example, given an input text X,
the new sentence is defined as X = X — R, where R is the set of salient features
identified by the explanation method. Let fy(X), be the neural network output
for class p. The measure of comprehensiveness is calculated as:

Comprehensiveness = f5(X), — fo(X), (5)

A higher score implies that the identified tokens included in R were more influ-
ential in the model’s predictions, compared with other tokens.

Sufficiency: The second metric focuses on evaluating whether the identified
features were enough to predict the same label as using the full text or not, and
is defined as follows:

Sufficiency = fo(X), — fo(R), (6)

Under sufficiency metric, lower scores are better. We calculate the AOPC
for both comprehensiveness and sufficiency using a variety of token percentages:
5%, 10%, 15%, 20%, and 25%.

Log-odds: Log-odds score is calculated by averaging the difference of neg-
ative logarithmic probabilities on the predicted class over all of the test data
before and after masking the top m% features with zero paddings,

(m))

Log-odds(m Zlog Z:(IX’ X)) (7)



Neural Networks with Feature Attribution and Contrastive Explanations 9

where X gm) is the new input based on replacing the top m% with the special
token <pad> in X; and t is the total number of samples. Lower log-odd scores
are better.Degradation score: Words are ranked according to "why p?" (de-
fined in Subsection 3.3-Why p?). In this way, higher-ranked tokens (features)
are recursively eliminated. The degradation score to the trained model accuracy
is calculated. We perform this experiment using a variety of token percentages:
5%, 10%, 15%, 20%, and 25%.

Results We compare our technique with competitive baselines, namely Shapely-
based methods (L /C-Shapely) [3], using log-odds, AOPC, and degradation score.
The log-odds and degradation scores are shown in Figure 3. The L/C-Shapley
focuses on instance-wise feature importance scores. Shapley values are extremely
expensive to compute and L/C-Shapley were proposed to compute approximate
Shapley values. We evaluate the explanation on the test set of the datasets.

AAAAAA
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% of masked features % of masked features

mMpB

Score
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H 1o 15 20
% of masked features

1o 15 20 s 10 15 20
% of masked features % of masked features

Fig. 3. Log-odds scores as a function of masked features (top). A steeper decline in-
dicates a better performance.Degradation score (y-axis) as a function of removed to-
kens(bottom). A steeper decline indicates a better performance.

Our approach achieves the best performance on both metrics (log-odds and
degradation score). Note that L-Shapley applying approximation Shapley values
perform better than C-Shapley. The results also show that the neural network
classifier employs less number of features for making predictions. Our method
also outperforms Shapley approximation methods on ERASER metrics achieving
the best result (Table 2) for both comprehensiveness and sufficiency on the three
datasets.

4.4 Evaluating Why p and not q?

To evaluate the faithfulness of contrastive explanations, we use the following
metrics:

Contrastive overlap score (COS) (%): we calculate the overlap (%) be-
tween the sets of causal attributes of “ Why p?” and “ Why p and not q?. Lower
% indicates more difference between the explanations of “ Why p?” and “ Why p
and not ¢%.
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Table 2. Eraser benchmark scores: Comprehensiveness and sufficiency in terms of
AOPC

L-Shapley C-Shapley Proposed

IMDB

Comprehensiveness  0.575 0.554 0.704
Sufficiency 0.1722 0.172 0.112
YELP

Comprehensiveness  0.494 0.479 0.562
Sufficiency 0.172 0.172 0.112
AG news

Comprehensiveness 0.384 0.37 0.524
Sufficiency 0.247 0.246 0.086

Contrastive confidence score (CCS): For a confidence score, we ana-
lyze the change in the probability of the contrastive class “¢.” We remove the
attributes that distinguish “p” from “¢” in order of their importance, until the
model’s prediction is flipped to another class. Please note the scores of the fea-
tures are obtained using "why p and not ¢?" We calculate the difference in the
probability of “¢” before and after the intervention. An increase in the probability
indicates an informative contrastive explanation.

Contrastive gain (CAG): This metric measures the quality of contrastive
explanations compared to the non-contrastive explanations. Here, our explana-
tions for the question “why p?” will be called non-contrastive explanations. Given
a prediction “p” and foil “q,” we measure the change in the probability score of
“q” after removing salient features using attribution-scores obtained from “why
p?” and also from “why p and not q?” explanation. We use our approach as
the baseline for “why p?”, because our method outperformed [3].For the “why p
and not ¢?” explanation, we used the method described in Section (3). A higher
contrastive gain indicates that our contrastive explanation is better in answering
“why p and not ¢?” questions. In summary, the contrastive gain measures the
change in probability of the foil class after removing some features.

Results We use the AG news dataset to evaluate our contrastive explana-
tion method. For contrastive overlap (COS), the results in Figure 4 show that
most contrastive explanations do have fine-grained differences from “ Why p?”
questions. The result suggests that the model is not using the same reasoning
for “Why p?” when answering the contrastive questions. We observed that, for
multi-class problems, there are fine-grained differences between “ Why p?” and
“Why p and not q?” compared to a binary problem such as sentiment classifica-
tion where there might be a higher similarity between the two explanations.

For (CCS), results shown in Table 3 indicate the effectiveness of our ap-
proach in finding contrastive information. Meaning that there is an increase in
the score of the foil "¢" when removing the features that distinguish "p" from
"¢". We also show the scores of other classes when using the (CCS) metric. We
re-trained the same model again on AG news and re-calculated the CCS. The
results are shown in Table 4. We can see that when the foil ¢ is set to "business"
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% of overlap btween 'why p?' and 'why p and not q?'

Fig. 4. Overlap score between "why p?" and "why p and not ¢?" questions. "0.0"
means that we did not consider the contrastive explanations when "p" and "¢" are
the same (X-axis: refers to why p? questions and Y-axis: refers to why p and not q?

questions.)

Table 3. Constrative confidence score (CCS). Empty cells mean that we cannot find
a contrastive explanation for the same class i.e., the foil should be different from the
predicted class. The highlighted cells show the scores of the foil after removing the
salient features.

World(q) Sport(q) Business(q) Sci/Tech(q)
Class(p) Before After Before After Before After Before After

World 0.05 0.22 0.05 041 0.01 0.33
Sport 0.07 0.45 0.01 0.35 0.04 0.21
Business 0.06 0.38 0.003 0.16 0.13 0.37

Sci/Tech 0.02 0.32 0.04 0.12 0.13 0.52

and evaluated with different classes (p) such as "world, sport, sci/tech ."The
probability score for the "business" is higher compared to other classes when
using why p and not business.? Due to page limit, we only show the results
for the "business" class (see Table 4). Figure 5 compares our non-contrastive

Table 4. We compare the scores of other classes when evaluating the CCS for the foil.
Here the foil is the business class.

World Sport Business(q) Sci/Tech

World(p) 0.2 -0.8 0.4 0.1
Sport(p) 0.3 0.1 0.5 -0.8
Sci/Tech(p) -0.7 0.1 0.4 0.1

explanations and contrastive explanation methods (CAG). We use the AG news
data and plot the results for different “why p and not ¢?” questions. The results
in Figure 5 indicate that our contrastive explanations are better capturing the
features that contribute prediction of 'not ¢’ than non-contrastive explanations,
especially when there are more fine-grained differences. The results show that
non-contrastive explanation is not always achieving high contrastive scores when
top features are masked. Instead of tracking the change in probability socre of
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Contrastive-score
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Fig. 5. Conrastive gain as a function of removed tokens. A higher gain indicates that
the method was better in capturing contrastive information. Attribution refers to our
non-contrastive method.

"q" after removing salient as in contrative gain , we instead calculate the AOPC
using different percentages (25%, 30%, 35%, 40%, 45%). The results are summa-
rized in Table 5. Our contrastive-explanation has the highest AOPC compared
to our non-contrastive explanation method.

Table 5. Contrastive gain (CAG): Evaluating the effectiveness of using contrastive
explanation when there are fined grained differences. We use different percentages
(25%, 30%, 35%, 40%, 45%) to calculate the AOPC.

P Q  AOPC(non-contrastive) AOPC(contrastive)
World  Business 0.04 0.065
Business Sci/tech -0.001 0.002
Sci/tech  World 0.304 0.341
Sci/tech Business 0.056 0.058
Sport  Business 0.05 0.052
Sport  Sci/tech 0.006 0.009

Highlighting why p and not q? questions: We show qualitative results
for interpreting the model predictions using our proposed approach; for example,
answers to the “ Why p?” and “ Why p and not ¢?” questions are shown in Table 6.
These results show that the model implicitly learns the contrastive information
when making the prediction.

Contrastive explanations applied to sentiment classification. For a
contrastive explanation, if there are no fine-grained differences between “p” and
“q”, then the same reasoning used for “why p?” questions will also be used to
answer “why p and not ¢?” questions. We observed this behavior in binary text
classification. For instance, we found that the model uses the same reasoning for
both questions (see Table 7). We attribute this observation to the fact that “why
p and not q?” cites the causal difference between p and not-q, i.e., consisting of a
cause of p and the absence of a corresponding event in the history of q. We also
found that explaining “ Why p and not q?” is not the same as explaining “ Why
q and not p?” In the case of sentiment classification, we found that these two
questions provide different answers, and it is consistent with the work of [12].
To validate our observations in sentiment classification, we focus now on the
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Table 6. Contrastive explanations on AG news.

Text World Sport Business|Sci/tech

record shown mutilated body found iraq| iraq dead hassan | kidnapped
kidnapped aid worker margaret hassan
british official say still believe british irish
citizen dead(P:World,Q:others)

search war begin today software giant mi-| engine | microsoft] engine | version
crosoft unveils test version new search en-
gine looking remarkably like one chief rival
google. (P:Sci/tech,Q:others)

version desktop search tool computer run| desktop | apple schmidt| mac
apple computer mac operating system
google chief executive eric schmidt said fri-
day(P:Sci/tech,Q:others)

inflation dozen nation sharing euro slowed| store inflation | price lure
initially estimated september company re-
duced price lure customer store offsetting
record energy cost.(P:World,Q:others)

overlap between “why p and not ¢?” and “why q and not p?.” We use the IMDB
dataset and calculate the overlap between the attributes (minimum subset of
the attributes required to flip the prediction) of “why p and not ¢?” and “why ¢
and not p?” The ratio of similarly was zero, which means the explanations are
entirely different.

4.5 Deep learned features

In Figure 6, we apply PCA over the sentence vectors learned via our proposed
method. The centroid loss forces the network to learn meaningful representa-
tions for the embedding layer. We can see that our current model struggles with
negative sentiment reviews according to the number of points (yellow color)
appearing in the positive sentiment cluster.

PCA over embeddings

0.010

0,005

v 0,000

-0.005

-0.010

03 -02 -01 00 01 02 03 04

Fig. 6. The distribution of deeply learned features under the centroid loss on IMDB
dataset.
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Table 7. why p and not q¢? Contrastive explanation is the same as why p? explanations
in binary sentiment classification.

Text Highlight

the story is enjoyable and easy to follow this could have been eas-| fantastic
ily messed up but the actors and director do a great job of keep-
ing it together the actors themselves are fantastic displaying wonder-
ful character and doing a terrific job gotta find a copy somewhere
(P:positive,Q:negative)

this performance that should elevate the film to a platform where it a| recommended
place on the best ever lists of courtroom dramas however despite its
apparent obscurity sergeant still remains a taut and compelling exam-
ination like a book that you just can’t put down highly recommended
(P:positive,Q:negative)

imagined in my mind what i saw on screen was slightly different how-| 8
ever it wasn’t enough to make me dislike the mini series i recommend
this for anyone who has read the novel you will not be disappointed
if you have 8 out of 10 stars (P:positive,Q:negative)

provide someone to at well one must do something beside during this| waste
film the movie is being sold on vhs now by people on e bay spare
yourself the expense and the waste of time a comedy without a laugh
a musical without a memorable song or dance (P:negative,Q:positive)

4.6 Discussion

Intrinsic models We have introduced an approach for constructing interpretable
neural models. We have shown that introducing additional constraints to the
learning objective does not sacrifice performance, and it also provides faithful
explanations to the black-box predictions. The centroid vectors are used as a
proxy to explain the predictions. We found that discriminative features (words)
tend to get closer to the corresponding centroid vector and irrelevant features
tend to get further away. Discriminative features are the words employed by the
network to make a prediction, and irrelevant features are the tokens ignored by
the classifier when making a prediction.

Centroid loss The empirical results demonstrated the usefulness of the cen-
troid vectors in finding the most salient features for every input. The centroid
loss does not require complex recombination of the training samples. Our ap-
proach targets the learning objective of the intra-class using term 2, which is
very beneficial to discriminative feature learning. We have also shown that our
contrastive explanations are helpful when there are fine-grained differences.

5 Conclusion

We have proposed an intrinsic neural model capable of explaining its predictions
faithfully. Our network architecture relies on a centroid loss to learn centroid
vectors. These centroid vectors are then used to provide two types of expla-
nations: (i) non-contrastive explanations and (ii) contrastive explanations. Our
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feature attribution method provides a better faithful explanation than Shapley’s
approximation based on three datasets using three metrics. We have also pro-
posed additional metrics to evaluate contrastive explanations. Our contrastive
explanation method can provide additional insights to non-contrastive explana-
tion, resulting in a better understanding of the neural model predictions. We
have also shown that interpretability does not affect the predictive accuracy of
the neural network. In future work, we would like to study the use of our intrinsic
neural model with different tasks in the NLP domain and extend our current
solution for producing counterfactual explanations.
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