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Abstract. In order to solve graph-related tasks such as node classifica-
tion, recommendation or community detection, most machine learning
algorithms are based on node representations, also called embeddings,
that allow to capture in the best way possible the properties of these
graphs. More recently, learning node embeddings for dynamic graphs at-
tracted significant interest due to the rich temporal information that they
provide about the appearance of edges and nodes in the graph over time.
In this paper, we aim to understand the effect of taking into account the
static and dynamic nature of graph when learning node representations
and the extent to which the latter influences the success of such learning
process. Our motivation to do this stems from empirical results presented
in several recent papers showing that static methods are sometimes on
par or better than methods designed specifically for learning on dynamic
graphs. To assess the importance of temporal information, we first pro-
pose a similarity measure between nodes based on the time distance of
their edges with an explicit control over the decay of forgetting over time.
We then devise a novel approach that combines the proposed time dis-
tance with static properties of the graph when learning temporal node
embeddings. Our results on 3 different tasks (link prediction, node and
edge classification) and 6 real-world datasets show that finding the right
trade-off between static and dynamic information is crucial for learning
good node representations and allows to significantly improve the results
compared to state-of-the-art methods.
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1 Introduction

Data in the form of graphs have become ubiquitous for describing complex in-
formation or structures from a large variety of domains of application such as a
social network where users can follow and communicate with each other; web-
pages linking to other webpages; a group of cities connected by roads or rails;
protein-protein interaction network to study genetic interactions in biology. In
all these examples, a graph is defined by a set of entities (named nodes or ver-
tices) and a set of pairs of related nodes (named edges or links). For instance, in
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Fig. 1: A dynamic graph representing working relationships.

the case of a social network, the nodes represent users and the edges can be any
relation between two nodes such as sending messages to one another or being
friends. Many different problems can be solved with graph modelization: search-
ing for the most relevant webpages given a query, being able to predict whether
two people will start a relationship [33] or finding who should collaborate to-
gether [3,8]. A common approach to solve these kinds of problems is to associate
each node of the graph with an embedding, a numeric vector reflecting the prop-
erties of this node such as its neighborhood, and more generally the structure
of the overall graph. Node embeddings are then fed into a downstream machine
learning model which is trained and optimized for a given task, e.g., link pre-
diction [5,10] or node classification [4]. Several methods have been proposed to
learn node embeddings directly from a graph [27,9,12,14]. Most of these methods
are designed for static graphs, where there is no temporal information about the
relations between nodes. However, most of real-world problems are represented
by dynamic or time-evolving graphs where edges are ordered in time and nodes
can be added or removed. Therefore, not using the temporal information during
training prevents from capturing the evolution of the interactions between nodes
inside their embeddings and can lead to poor predictions.

To illustrate this, let us consider a group of people and their work relation-
ships where our task is to suggest a new collaboration to John based on Figure 1.
One may see that a good suggestion here for John’s new collaboration is Mary
as she is the most recent collaboration (2019) of John’s only connection James.
However, a static method that doesn’t take into account the information about
the temporal evolution of this graph (ie, years over edges) will suggest Amanda,
Richard, Steve and Mary to John as they are connected to his sole connection
James. On the other hand, a dynamic method will take into account the tem-
poral information over all timestamps even though only timestamp Figure 1b
provides helpful information in this case, while Figure 1a is uninformative to this
task. While for one uninformative timestamp this may not lead to a failure of
the model, real-world graphs may have thousands of timestamps and attributing
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the same importance to all of them may have a dramatic effect on the overall
performance. Ideally, one would like to have a method that allows to control the
forgetting and its speed when learning node representations in dynamic graphs
to take into account only relevant information contained in them.

This paper addresses the problem of learning node representations in dynamic
graphs where the temporal information is encoded inside their embeddings. We
use the intuition presented above to provide a model with a way to forget the past
timestamps with an explicit control over the speed of this forgetting. The main
contributions are: (1) a novel approach to compute similarities between nodes
based on static or dynamic information, suitable for both continuous and discrete
dynamic graphs; (2) a model that learns nodes embeddings using the computed
similarities and generates vectors that reflect the temporal characteristics of the
graph; (3) an evaluation on 6 real-world datasets and 3 different tasks showing
that a good trade-off between static and dynamic parts of the graph lead to the
best performance in most cases.

2 Related work

2.1 Node embeddings in static graphs

In a static graph, all nodes and edges exist at the same time and no new edges
appear over time. In this context, the goal of a node embedding method is to
learn a function that takes a network as an input and maps each node to a
low-dimensional vector. The learned vectors should reflect the structure of the
network and the relations between nodes, i.e., similar nodes in the graph have
similar vectors. In [27], authors simulate random walks from one node to another
using the edges and optimize node embeddings such that nodes that co-occur
often in random walks of fixed length should be close in the embedding space.
Node2Vec [9] uses a similar approach to build walks in the graph but it selects
the next node based on a biased sampling. The generated paths are then fed
into a Word2Vec model [21]. In the same vein, [1] propose to extend another
word embedding model, namely GloVe [26], to learn node representations. Other
methods factorize the adjacency matrix to learn a vector representation for each
node with either SGD or SVD [2,23] , or train a model that learns how to combine
the features of a node and its neighborhood [11]. For more details on this topic,
we refer the interested reader to [12].

2.2 Node embeddings in dynamic graphs

In dynamic graphs, edges and nodes can appear (or disappear) over time. They
can be separated into two categories: time-continuous graphs, where each change
in the graph happens at a specific time t, and discrete graphs where a batch of
changes happens during a time interval. The former can be transformed into the
latter by grouping together all the changes that happen during [t, t + T ] where
T is the duration of the interval, but not the other way around. A naive way to
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learn node embeddings from a dynamic graph would be to use static methods on
the final state of the graph, but the temporal information would not be captured
in this case.

Several temporal node embedding techniques directly follows Node2Vec [35,22].
CTDNE generates paths in a time-continuous graph where the order of visited
nodes respects the order of appearance of edges [22]. tNodeEmbed uses Node2Vec
on each interval of a dynamic graph, aligns the node embeddings and passes
them into a LSTM to obtain a unique vector for each node [30]. DynGEM trains
autoencoders to reconstruct the adjacency matrix of each interval but initializes
their weights with the weights of the autoencoder trained on the previous inter-
val. The embedding of a node is the latent layer of the autoencoder after the final
interval [7]. This method was extended in dyngraph2vec [6] where the adjacency
matrices of multiple previous intervals are passed into the autoencoder. Finally,
recent approaches such as EvolveGCN [25] or GAEN [29] learn embeddings at each
timestep with Graph Convolution Networks or Attention models, and combine
it with RNN or GRU to capture the graph evolution.

Although these methods operate on dynamic graphs, they do not take into
account the activity history of an edge, i.e., how often an edge appeared in the
past and whether or not an edge has recently been used between two nodes.
With the example in Figure 1, learning embeddings with those methods would
make the vector of James close to the vectors of Richard, Mary and John, but
the vectors of Mary and John should be closer because their relation with James
is more recent. That is, since new edges appear over time, they should have
more weight during training. The method we propose uses time difference be-
tween edges to select and weight more importantly the most recent edges during
training.

Another drawback of these approaches is that they only focus on the tem-
poral aspect of the graph and do not allow one to balance between static and
dynamic structural aspects. As a result, they can be outperformed by purely
static approaches on graphs where the dynamics do not carry as much informa-
tion as the original structure of the graph. To tackle this problem, JODIE was
proposed by [19]. This model focuses on bipartite graphs and learns two em-
beddings (a static and a dynamic one) for each node separately using RNNs. In
this article, we are interested in non-bipartite graphs and we devise an objective
function that allows one to learn node embeddings using both the static and
the temporal information simultaneously, with an explicit control on the weight
given to each part during the training.

3 Learning node embeddings using time distance

Below, we present the learning setup considered in this paper and our general
framework that learns node embeddings by taking into account both static and
dynamic information of a graph. This latter is then equipped with a forgetting
mechanism that attributes more relevance to recent events.
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3.1 Problem setup

Given a graph G = (V, E) where V = v1, · · · , vn is the set of vertices (|V| = n)
and E ⊆ V ×V is the set of edges, we aim to learn a function that maps vertices
v ∈ V into a d-dimensional vector space, with d � n. This mapping function
outputs a node embedding vector denoted by z ∈ Rd,∀v ∈ V. Z ∈ R(n×d)

is the matrix storing all node embeddings. In the context of dynamic graphs,
we further assume that each edge eij ∈ E is characterized by both static and
temporal attributes: the static attribute, denoted by aij , corresponds to the
number of edges which occurred between a pair of nodes (vi, vj); the temporal
attribute, denoted by tij = t

(1)
ij , · · · , t

(aij)
ij , is a list containing the timestamps

associated with each link.

3.2 General framework

Our first goal is to design a general framework for learning node embeddings
from both static and temporal attributes simultaneously. Given two nodes (vi,
vj), we propose to minimize the error between their similarity given by the dot
product of their embeddings and their static simS : V × V → R and temporal
simT : V × V → R similarities in the original graph. As for each edge associated
to a pair of nodes, these nodes can either be seen as the source or as the target
node (i.e., either eij or eji), we learn two vectors for each node and store them
in two matrices, Z and Z̃. When the graph is undirected, both matrices are
equivalent; when the graph is directed, the two embedding vectors allow one
to differentiate edges for which a given node is the source node from edges for
which it is a target node. In the end, we take the average of these embeddings to
obtain one single vector for each node. Putting it all together, we consider the
following optimization objective:

J =

n∑
i,j=1

λ
[
zTi · z̃j − log(simS(vi, vj)

]2
+ (1− λ)

[
zTi · z̃j − log(simT (vi, vj))

]2
,

(1)
where λ is a hyperparameter allowing us to control the balance between the static
and the temporal component in the final node embeddings. Since the log function
is not defined for 0, we discard the zero-values of simS(vi, vj) and simT (vi, vj)
to be used in the objective function. If two nodes have a static or a temporal
similarity of 0, it means there is no edge between them and therefore their vectors
should not be trained to be moved closer. We now proceed to defining the last
two missing ingredients simS(vi, vj) and simT (vi, vj).

3.3 Static and temporal similarities between nodes

To illustrate our proposal for static and dynamic similarity functions, we use a
running example given in Figure 2 throughout this section. The latter is given
by a small dynamic graph composed of 7 nodes (n = 7). In this dynamic graph,
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Fig. 2: Example of a temporal graph. In red, the number of edges between nodes.
In blue, the times at which they appear.

an edge between two nodes can appear multiple times (e.g., two people can send
several emails to the other one). For instance, between A and B, there are 2
edges, that appear at time t = 103 and t = 108 (blue numbers). Red numbers in
Figure 2 correspond to the number of edges between two related nodes (which
does not depend on the time of appearance of edges). We are now ready to define
simS(vi, vj) and simT (vi, vj).

Static similarities Given the abundance of different node embedding tech-
niques for static graphs, one can define simS(vi, vj) in many different ways. In
this work, we propose to define a similarity based on the normalized adjacency
matrix similar to the LINE embedding model [31] where simS(vi, vj) denotes
the probability of going from a node vi to a node vj in a random walk. These
probabilities rely on both first and second-order proximity statistics and are
computed using the static edge attributes. We have, ∀i, j = 1, · · · , n:

simS(vi, vj) =


aij
ai

if eij ∈ E∑
k
aik
ai
· akj

(ak−aik) if eij /∈ E ∩ ∃vk : eik, ekj ∈ E
0 otherwise,

(2)

where aij is the number of edges that occur between a pair of nodes vi and
vj ; ai =

∑
j aij . This similarity can be easily computed for either directed or

undirected graphs. One should note that the role of the first term is to capture
first-order proximity between two nodes in the graph (i.e., the existence of an
edge between two nodes) while the second term captures second-order proximity
for pair of nodes separated by a distance of 2 in the graph.

In Figure 2, we have sCA = 7/13 and sAC = 7/10. One should note that
static similarities are not symmetric. For nodes with a distance of 2, we have
sCB = sCA × sAB = 14/39. When several paths are available to join vi and vj ,
we sum the probabilities of all paths (so sCD = 10/39).
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We want to stress out that the first part of the objective function is versatile
(see [32]), as one can define the static similarity using other popular methods
such as, for instance, Personalized PageRank [24] or SimRank [13].

Temporal similarities As explained above, the temporal similarity should take
into account the information from different timestamps of a dynamic graph but
also allow the model to forget the past that became irrelevant. To this end, we
propose to define simT as a function of the time delta between the most recent
and the other edges of a node and its neighbors. Formally, it is defined as:

simT (vi, vj) =

{∑
k f(∆t

(k)
ij

) if eij ∈ E

0 otherwise,
(3)

where f is a decreasing function, allowing us to give more weight to recent edges
(i.e., when ∆ is small) and ∆tij = maxj(tij) − tij (i.e., the time difference
between the timestamp tij and the most recent timestamp among all edges
starting from node vi). Choosing f to be a decreasing function indicates that
we assume that as times passes, the strength of the relation between two nodes
becomes weaker. We believe that for social networks, or co-citation networks this
is a reasonable assumption. However for applications such as Protein-Protein
interaction where this assumption might not be ideal, one can easily relax this
condition and choose a function f that suits best their need.

Going back to our example, blue numbers in Figure 2 are the times at which
edges appear between the nodes. A model learning node embeddings using only
static information would make the vector of C more similar to A than to E
because it has more edges with A (7 > 4). However, edges between C and E
are more recent than between C and A (t = 114, 115, 116 vs. t = 110, 112).
The intuition behind temporal similarities is to bring closer the vectors of nodes
having the most recent interactions. In Figure 2, we have dCE = f(∆111) +
f(∆114) + f(∆115) + f(∆116). The most recent edge of C appears at t = 118, so
∆111 = 118−111 = 7 and therefore dCE = f(7)+f(4)+f(3)+f(2). One should
note that temporal similarities are also not symmetric. Indeed, for dEC , the most
recent edge of E appears at t = 116, so we would have ∆111 = 116− 111 = 5.

In the following, we choose f to be a survival function of the form:

f : x→ e[−α∗(x/xmax)
2],

where α is a hyperparameter that controls the decay rate of this weight function
and xmax is the maximum value that can be passed to f (i.e., the largest time
distance). This function models the probability for a given relation (i.e. an edge)
to survive past a certain time, here represented by time-steps (see Figure 3).
For high values of α this probability decreases faster to 0, than for small values
of α. In that case, our model strongly favors the short-term rather than the
long-term dynamic of the graph, a reasonable assumption when dealing with a
graph presenting important structural changes between two time-steps. On the
other hand, as α decreases, our model will take into account all the edges from
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the past, hence capturing long-term dynamics. This particular setting will suit
graphs presenting a smooth evolution over time, with all edges being relevant at
any time. In the asymptotic limit, this function can be “flat" enough to behave
as a dynamic model that takes into account all timestamps of a dynamic graph.
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Fig. 3: Survival function f : x → exp[−α∗(x/xmax)
2] for different values of α and

with xmax = 16. (b) satisfies the Pareto’s law meaning that 20% most recent
edges have a weight among the highest 80%, i.e., f(0.2 ∗∆timax

) = 0.8.

3.4 Complexity Analysis

For simT , we have to compute at most |E| values (corresponding to the non-zero
entries of the adjacency matrix) because only direct edges. For simS we have to
compute on average |V| × κ2 values where κ is the average node degree in the
graph (so each node can reach on average κ2 other nodes with a distance of 2).
Therefore, the complexity of our model is O(|V| × κ2 + |E|) because it iterates
only over the non-zero similarities.

4 Experiments

4.1 Datasets

We evaluate our hypothesis about the importance of combining both static and
dynamic information for learning good node embeddings on 6 real-world datasets
representing dynamic graphs: messages sent between people ( Radoslaw1 [28],
ENRON2 [16]), links between webpages (Subreddit3 [17]), network of routers

1 https://networkrepository.com/ia-radoslaw-email.php
2 https://networkrepository.com/ia-enron-employees.php
3 https://snap.stanford.edu/data/soc-RedditHyperlinks.html

https://networkrepository.com/ia-radoslaw-email.php
https://networkrepository.com/ia-enron-employees.php
https://snap.stanford.edu/data/soc-RedditHyperlinks.html
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(Autonomous Systems4 [20]), rating of Bitcoin users (BTC-Alpha5 and BTC-
OTC6 [18]). As explained in Subsection 2.2, dynamic graphs can be continuous
or discrete. We use both types of graphs in our experiments to demonstrate
that our model works regardless of the nature of the dynamic graph. Table 1
reports statistics about each dataset. For some datasets, we use a smaller version
because some baselines were not able to run on the full version (for Subreddit,
we consider only nodes with at least 10 edges; for Autonomous Systems (AS),
we use only the 100 first steps).

Table 1: Statistics about the datasets used for experiments. (∗) indicates datasets
that have been shrunk. deg(vi) (resp. Ci coef.) is the average degree (resp. clus-
tering coefficient) of all nodes.

Dataset Nodes Edges Type deg(vi) Ci coef.

Radoslaw 167 82,876 Continuous 992.5 0.592
ENRON 150 47,088 Continuous 627.8 0.521
Subreddit (∗) 6,340 223,457 Continuous 70.5 0.364
Auto. Sys. (∗) 3,569 561,139 Discrete 314.5 0.257
BTC-Alpha 3,783 24,186 Continuous 12.8 0.177
BTC-OTC 5,881 35,592 Continuous 12.1 0.178

4.2 Evaluation tasks

Link predictions. This task consists in predicting if a link between two nodes
exists or not in the graph. We follow the same protocol as in [15]. For each edge
(u, v) in T , the set of all unique test edges, we generate the list Nv (resp. Nu) of
negative edges obtained by replacing v (resp. u) by another node from the graph
such that the negative edge does not exist. Then, the cosine similarity between
the embeddings of u and v is computed, as well as its rank rv (resp. ru) against
the cosine similarities of all edges in Nv (resp. Nu).

The Mean Reciprocal Rank (MRR) is the mean of the inverse of rv and ru
for all edges (u, v) in T :

MRR =
1

2× |T |
∑

(u,v)∈T

( 1

ru
+

1

rv

)
.

In addition to the MRR, we also compute Hits@K metrics (the percentages of
ranks rv or ru which are less than K).

4 https://snap.stanford.edu/data/as-733.html
5 https://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html
6 https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html

https://snap.stanford.edu/data/as-733.html
https://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html
https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
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Node classification. This task only applies to the Subreddit dataset. It consists
in predicting the correct label of nodes in the graph. Plenty of graphs with la-
beled nodes exist in the static configuration (i.e. when there is no evolution in
the network over time) but dynamic graphs with node class information are al-
most non-existent. To overcome this problem, we generate labels for each node
in the Subreddit dataset. It contains 6,340 nodes. We use an automatic method
to generate the labels for similar nodes with a clustering algorithm and manu-
ally verify that related subreddits are within the same cluster. Each node in this
dataset represents a subreddit, the name of a topic-specific discussion forum (e.g.
chess, Olympics). Using the property of word embeddings to encapsulate seman-
tic information, we generate the word embedding of each subreddit name using
Fasttext library7. Since subreddits such as ”skiing“ or ”skateboarding“ are words
related to the same semantic field, their respective word embeddings should be
similar thanks to the Fasttext learning scheme. We then use a K-Means cluster-
ing algorithm to group together similar word embeddings, thus grouping related
subreddit. We try different values for K, from 20 to 80. When K is too low, there
are not enough clusters and unrelated subreddits fall into the same category
when they should not. When K is too high, related subreddits are often sepa-
rated into different groups. We find that using 50 clusters is a good trade-off.
Each node is then associated with the ID of the group it belongs to. Table 2
shows some examples of subreddits with the same label. For the node classifica-

Table 2: Examples of subreddits with the Autona for the node classification
Label = 3 Label = 17 Label = 32 Label = 41 Label = 43

altcoin judo blizzard albania amazon
bitcoin olympics bloodborne finland ebay

bitcoinmining skateboarding counterstrike italy netflix
cryptocurrency skiing halo poland silkroad

dogecoin swimming overwatch spain spotify
ethereum tennis streetfighter usa tumblr

tion task, we train a logistic regression classifier on the learned node embeddings
(the embeddings learned from our dynamic graph method, not those generated
with Fasttext) to predict their corresponding class. We report the accuracy.

Edge classification. This task only applies to the Bitcoin datasets and consists in
predicting the class of edges. In BTC-Alpha and BTC-OTC, an edge indicates
that one user of the Bitcoin trading platform rated another user on a scale
from -10 to +10. We generate a binary label for each edge: 0 if the rating is
negative, 1 otherwise. We compute an embedding for each edge by averaging
the embeddings of the involved nodes. We train a linear regression classifier on

7 https://fasttext.cc/

https://fasttext.cc/
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the edge embeddings to predict their corresponding binary label. The dataset is
unbalanced, about 90% of edges have a label of 1. We report the F1 score.

4.3 Training settings

Each graph is split into a train (75%) and a test set (25%) according to times-
tamps. The same train and test sets are used for all models. We train vectors
of 20 dimensions for small datasets (ENRON, Radoslaw) and 100 dimensions
otherwise (same as in [7]). Our hyperparameters are tuned with a grid search to
maximize the MRR on the train set, with α ranging from 2 to 60 with steps of 3,
λ ranging from 0 to 1 with steps of 0.05 and the number of epochs ranging from
20 to 300 by steps of 20. All experiments are done with an Intel Xeon E3-1246
CPU, a NVIDIA Titan X GPU and 32 GB of RAM.

4.4 Baselines

Our model uses both static and temporal information during training. Therefore,
we compare it against methods that learn node embeddings from static graphs
(Node2Vec, GraphSage [11]) and other methods from dynamic graphs (CTDNE,
tNodeEmbed, DynGEM, dyngraph2vec (AERNN version), EvolveGCN). We set a
walk length of 40 for Node2Vec and CTDNE, and a length of 5 for GraphSage. We
generate 10 walks per node for these methods. Other hyperparameters are set as
indicated in their respective papers. For GraphSage, we use one-hot vectors as a
replacement for node feature vectors when they are not present, as advised by
the authors. We do not use DynamicTriad [34] as a baseline because it has been
reported to have lower scores than tNodeEmbed and dyngraph2vec. Baselines
are trained on the same machine as our model.

5 Results and analysis of the model

In this section8, our goal is to answer two following questions:

Q1 Does learning from both static and dynamic information lead to better node
embeddings?
To this end, we compare our method with several static and dynamic node
embedding methods on 6 real-world datasets and on 3 different tasks.

Q2 What insights such framework can provide about the graphs on which it is
applied?
To answer this question, we analyze the optimal values of λ and α revealing
the importance of static component for learning node embeddings and the
effect of forgetting when taking into account temporal information.

The proposed method has both a static and a dynamic component. We first
compare its results against dynamic methods as we are working with dynamic
graphs, and then against static methods. Thereafter, we analyze the role of each
component depending on the dataset and we evaluate its complexity.
8 Code to reproduce our results and access datasets can be found here:
https://github.com/laclauc/DynSimilarity

https://github.com/laclauc/DynSimilarity
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Table 3: MRR and Hits@K metrics on 5 datasets for our method and other base-
lines on a link prediction task. Bold and underline results indicate respectively
the best and the second best value for each metric.

Radoslaw ENRON Subreddit AS

MRR Hits@5 Hits@50 MRR Hits@5 Hits@50 MRR Hits@5 Hits@50 MRR Hits@5 Hits@50

Static
Node2Vec .088 15.82% 62.18% .247 52.65% 91.27% .123 21.07% 37.04% .221 44.94% 70.12%
GraphSage .100 17.42% 71.12% .230 48.85% 86.24% .100 15.60% 31.21% .146 27.79% 56.04%

Dynamic
CTDNE .111 19.28% 82.46% .235 48.32% 86.80% .112 18.11% 31.34% .215 42.53% 69.88%

tNodeEmbed .169 33.93% 71.22% .228 47.24% 86.35% .105 16.32% 31.29% .020 2.24% 6.19%
DynGEM .123 16.93% 55.62% .177 34.18% 74.44% .080 9.29% 11.56% .077 8.37% 11.10%

dyngraph2vec .180 36.51% 81.02% .145 27.46% 72.05% .088 9.69% 17.79% .031 3.84% 8.19%
EvolveGCN .097 16.96% 64.43% .124 22.54% 67.01% .053 6.02% 10.40% .017 1.64% 4.48%

Our 0.329 69.33% 96.71% 0.298 62.24% 92.16% 0.132 22.54% 37.58% 0.146 28.47% 50.80%

5.1 Against dynamic graph methods

Table 3 reports the scores of all modelsfor the task of link prediction. The MRR
is the average of the inverse rank of a true edge against false random edges.
Higher scores indicate that a model is able to better differentiate true edges
against negative ones. On 3 out of 5 datasets, our method strongly outperforms
all the other dynamic methods in terms of MRR. The Hits@K metrics in Table 3
indicate the percentage of true edges whose rank is among the first K when
compared to several hundreds negative edges. We observe similar results as for
the MRR. For instance, on Radoslaw, our method is able to retrieve almost 70%
of true edges in the top 5 while other methods can only retrieve 36% at best. This
means that our method ranks the majority of true edges with a much better rank
than the other methods (top 5 vs. top 50), which is useful in a recommendation
task. Note that Radoslaw and ENRON are the two datasets with the highest
clustering coefficient and average degree (Table 1). The temporal information is
crucial in these datasets because a change in the network topology spreads faster
than for other datasets as they both represent email communications between
people of a company, and are well suited to evaluate dynamic methods [5]. Our
method outperforms other dynamic methods on those graphs, demonstrating
that it is well appropriate for graphs where temporal information is important.

Results on the two other tasks are reported in Table 4. For node classification,
the proposed model improves the classification accuracy over the other dynamic
baselines. The results notably show an important improvement over the auto-
encoder and GCN-based approaches, with results almost 4 times better than
EvolveGCN for instance. Finally, for the edge classification task, we outperform
all dynamic baselines on both Bitcoin datasets by an important margin.
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Table 4: Results on a node classification task (accuracy of correct predictions
among 50 classes) and an edge binary classification task (F1 score).

Node classif. Edge classif.

Subreddits BTC-Alpha BTC-OTC

Static methods
Node2Vec 18.24% 0.254 0.290
GraphSage 19.67% 0.293 0.312

Dynamic methods
CTDNE 19.21% 0.192 0.251

tNodeEmbed 22.20% 0.173 0.280
DynGEM 7.03% 0.080 0.321

dyngraph2vec 8.24% 0.398 0.273
EvolveGCN 6.04% 0.361 0.268

Our 22.86% 0.429 0.360

5.2 Against static graph methods

Table 3 reports the scores of static baselines (Node2Vec and GraphSage). Our
method outperforms GraphSage and Node2Vec on 4 out of 5 graphs in terms of
MRR (e.g. 0.329 vs. 0.100 on Radoslaw), and Hits@5 (e.g. 62.24% vs. 52.65% on
Subreddit). It is on par on AS against GraphSage but looses against Node2Vec.

One should note that AS and Subreddits are the biggest graphs among the
datasets, and most of the edges do not vary over time. Therefore, their behavior
is similar to a static graph, which explains why Node2Vec is only slightly under
or better than our dynamic method for them. Our best results for these datasets
are obtained when the dynamic component of our model driven by 1-λ is almost
zero , validating the assumption that they have a static behavior. However, our
method doing better on the other datasets demonstrates that the dynamic com-
ponent in our model is important to learn embeddings when the dataset evolves
greatly over time, which Node2Vec cannot achieve. Our conclusions on node and
edge classification are similar to the one made against dynamic approaches.

Overall, the obtained results demonstrate that our model is able to produce
node embeddings capturing both the dynamic and the static aspects of an evolv-
ing graph. They are versatile, as we obtain consistently good results for various
tasks, including link prediction, node classification and edge classification. Our
approach is also robust to various graphs topology as we either outperform all
other baselines or rank second at worst on all datasets. This shows the benefit
brought by the two components of our objective function.

5.3 Influence of the hyperparameters of the model

We are now ready to address the second question. Our model naturally provide a
way to gain insights regarding the dynamic of the graphs, through its two hyper-
parameters λ and α. Our model has both a static and a dynamic component,
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λ Decay rate (α)

Radoslaw 0.05 2.634
ENRON 0.10 4.063
Subreddit 0.70 4.063
Auto. Sys. 0.40 30.099
BTC-Alpha 0.25 4.063
BTC-OTC 0.35 5.579
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Fig. 4: Evolution of MRR versus static coefficient used in our model.

each one with its own coefficient in the objective function (resp. λ and (1-λ)).
The two coefficients are inter-dependent: increasing one decreases the other.
Therefore, they behave as a cursor that one can set to favour the static or the
dynamic part of the method. We notice in our experiments that the value of λ
must be selected depending on the nature of the dataset. Figure 4(b) shows the
evolution of the MRR according to the value of λ on some datasets. We can see
that when λ increases, the MRR drops for most datasets. Indeed, a value of λ
close to 1 means that the dynamic part in our objective function is almost non-
existent, which is detrimental for dynamic graphs. Unsurprisingly, the highest
decrease is on Radoslaw, two datasets with a strong evolution over time that
therefore require a large dynamic component in the model to capture temporal
information. For Subreddit, the drop is smaller because this dataset does not
vary a lot over time, so the static part is more important in this case. This
is confirmed by Figure 4(a), which reports the λ and α hyperparameters that
gives the best scores for each dataset. Radoslaw needs a dynamic oriented model
((1-λ) close to 1) while Subreddit needs a dominant static part (λ = 0.7) to
achieve good results. We also notice that a large value of α makes the temporal
similarities more focused on very short-term interactions while a smaller α allows
to consider a longer history of previous events.

5.4 Training times

Table 5 reports the time required by each method to train on all 6 datasets. Due
to its simplicity (no complex architectures like RNN/LSTM nor convolution
networks), our method only needs 40 minutes, which makes it the fastest among
all the dynamic methods (e.g. 6h36 for DynGEM, 24h01 for dyngraph2vec).
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Table 5: Times required to train all models on the 6 graphs. Minimum time is
highlighted by boldface.

Node2vec GraphSage tNodeEmbed CTDNE DynGEM dyngraph2vec EvolveGCN Our

Training time 48:53 14:43:27 1:34:08 4:00:56 6:36:10 24:01:18 5:33:11 40:36

6 Conclusion

This paper studies the importance of combining both static and dynamic infor-
mation when learn node embeddings in dynamic graphs. It introduces a novel
temporal similarity measure between nodes based on time distance of edges and
a model that uses it in addition to static similarities to learn embeddings that
reflect the structure of the dynamic graph. This method allows one to emphasize
either the static or the dynamic component of the model to adapt to different
kinds of graphs. It obtains better scores than other dynamic methods on 6 real-
world datasets for various tasks thus suggesting that fully dynamic approaches
may be too rigid for efficient learning in dynamic graphs. Further research di-
rections of this work are many. First, we would like to explore new types of
node similarities to train on different specific graphs such as bipartite graphs or
knowledge-based graphs. tasks. We also plan to investigate how to integrate tem-
poral node attributes into this framework by leveraging adapted Graph Neural
Networks (GNN) architectures [36].
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