
Team-Imitate-Synchronize for Solving
Dec-POMDPs ?

Eliran Abdoo, Ronen I. Brafman�, Guy Shani and Nitsan Soffair

Ben-Gurion University of the Negev
{eliranab,brafman,shanigu,soffair}@bgu.ac.il

Abstract. Multi-agent collaboration under partial observability is a dif-
ficult task. Multi-agent reinforcement learning (MARL) algorithms that
do not leverage a model of the environment struggle with tasks that re-
quire sequences of collaborative actions, while Dec-POMDP algorithms
that use such models to compute near-optimal policies, scale poorly. In
this paper, we suggest the Team-Imitate-Synchronize (TIS) approach, a
heuristic, model-based method for solving such problems. Our approach
begins by solving the joint team problem, assuming that observations are
shared. Then, for each agent we solve a single agent problem designed to
imitate its behavior within the team plan. Finally, we adjust the single
agent policies for better synchronization. Our experiments demonstrate
that our method provides comparable solutions to Dec-POMDP solvers
over small problems, while scaling to much larger problems, and provides
collaborative plans that MARL algorithms are unable to identify.

1 Introduction

Problems that require collaborative effort by several agents, operating under
partial observability, are extremely challenging. Such problems can be tackled
by a centralized planning algorithm that creates a policy for each agent. Then,
each agent executes its policy in a distributed manner, restricting communication
with other agents to explicit actions dictated by the policy.

Recently, cooperative multi agent problems are often tackled by deep multi-
agent reinforcement learning (MARL), often under the term centralized learning
for decentralized execution, showing impressive improvements [16, 18]. RL is able
to learn a policy directly, without requiring access to a model of the environ-
ment’s dynamics. In the single-agent case, model-free RL methods are sometimes
employed even when a model exists, because in many problems, a specification
of a policy can be orders of magnitude smaller than a model of the environment.

However, in many MA domains, a sequence of collaborations, conditioned
on appropriate observations, is needed to complete a task and earn a reward.
MARL algorithms must explore the policy space, blindly at first, to identify such
beneficial behaviors. As we show in this paper, current MARL algorithms have
significant difficulty discovering such sequences by pure exploration.
? Supported by ISF Grants 1651/19 and 1210/18, Ministry of Science and Technology’s
Grant #3-15626 and the Lynn and William Frankel Center for Computer Science.

2 Abdoo et al.

On the other side of the spectrum lie algorithms that rely on a complete
specification of the environment, typically as a Dec-POMDP model [3]. Given
such a specification the agents can identify good behaviors more easily. Some
Dec-POMDP solvers can compute solutions with optimality guarantees or error
bounds. But these solvers have difficulty scaling up beyond very small problems
– not surprising given the NEXP-Time hardness of this problem [3].

In this paper we suggest a new approach for solving MA problems given
a model. Like Deep MARL methods, our approach does not provide optimality
guarantees, yet scales significantly better than existing Dec-POMDP algorithms.
Unlike MARL methods, we can use the world model to better guide the agents
towards complex beneficial behaviors. This allows us to solve problems that
require a sequence of collaborative actions, where MARL methods utterly fail.

Our approach, Team-Imitate-Synchronize (TIS) works in 3 phases. First, we
solve a team POMDP in which every agent’s observations are implicitly available
to the other agents. Hence, all agents share the same belief state. The solution to
the team POMDP is typically not executable because it may condition an agent’s
actions on observations made by other agents. Hence, in the next step, TIS tries
to produce a policy for each agent that imitates that agent’s behavior within the
team policy. The resulting policies are executable by the agents, as they depend
on their own observations only. However, they are not well synchronized. The last
step improves the synchronization of the timing of action execution by different
agents, while still relying on information available to that agent only. In the Dec-
POMDPs with a no-op action we consider here, this can be done by delaying
the execution of particular parts of the policy.

TIS is a general approach for solving Dec-POMDPs — there are different
ways of instantiating the Imitate and Synchronize steps, and we offer here a
simple, heuristic instantiation. We create a specific imitation-POMDP for each
agent in which it receives reward for behaving similarly to its behavior in the
team policy. The synchronization step employs a heuristic approach that ana-
lyzes the agents’ policy trees to improve synchronization. That being said, our
chosen methods for these steps enable us to handle many MA problems that
cannot be currently solved by any other method. TIS does not provide optimal-
ity guarantees because the Team step solves a relaxed version of the original
multi-agent problem. We know that an optimal solution to a relaxed problem
may not be refinable to an optimal solution of the original problem (e.g., see the
case of hierarchical planning and RL [7]). Yet, relaxation-based methods offer a
very practical approach in many areas.

We experiment on 3 problems, comparing our approach to exact and approx-
imate Dec-POMDP solution methods, as well as MARL algorithms. We demon-
strate that TIS scales significantly better than all other methods, especially in
domains that require non-trivial coordination of actions. Such collaborations in-
clude both the ability to order actions properly, so that one agent’s actions help
set up conditions needed for the success of other agents’ actions, and the ability
to perform appropriate actions concurrently. Code and domain encodings are
available at https://github.com/neuronymous/decpomdp-solver.

Team-Imitate-Synchronize for Solving Dec-POMDPs 3

2 Background

POMDPs: A POMDP models single-agent sequential decision making under
uncertainty and partial observability. It is a tuple P = 〈S,A, T,R,Ω,O, γ, h, b0〉.
S is the set of states. A is the set of actions. T (s, a, s′) is the probability of
transitioning to s′ when applying a in s. R(s, a) is the immediate reward for
action a in state s. Ω is the set of observations. O(a, s′, o) is the probability of
observing o ∈ Ω when performing a and reaching s′. γ ∈ (0, 1) is the discount
factor. h is the planning horizon. A belief state is a distribution over S, with
b0 ∈

∏
(S) denoting the initial belief state.

We focus on factored models where each state is an assignment to some
set of variables X1, . . . , Xk, and each observation Ω is an assignment to ob-
servation variables W1, . . . ,Wd. Thus, S = Dom(X1) × · · · × Dom(Xk) and
Ω = Dom(W1)× · · · ×Dom(Wd). In that case, τ , O, and R can be represented
compactly by, e.g., a dynamic Bayesian network [4].

For ease of representation, we assume that actions are either sensing actions
or non-sensing actions. Sensing actions do not modify the state of the world, and
may result in different observations in different states. An agent that applies a
non-sensing action always receives the null-obs observation. We assume that ev-
ery action has one effect on the world that we consider as its successful outcome,
while all other effects are considered failures. Both assumptions are realistic in
many domains. Both can be removed, at the cost of a more complex algorithm.

A solution to a POMDP is a policy that assigns an action to every history of
actions and observations (AO-history). It is often represented using a policy tree
or graph (a.k.a. finite-state controller). Each vertex is associated with an action,
and each edge is associated with an observation.

A trace T is a sequence of quintuplets ei = (si, ai, s
′
i, oi, ri), where si is the

state in step i, ai is the action taken in step i; s′i = si+1 is the resulting state,
and oi and ri are the observation and reward received after taking action ai in
si and reaching s′i. For brevity, in our description, we typically ignore s′i and ri.

Dec-POMDPs: Dec-POMDPs model problems where n > 1 fully cooperative
agents seek to maximize the expected sum of rewards received by the team. The
agents act in a distributed manner and obtain different observations, so their
information states may differ. Formally, a Dec-POMDP for n agents is a tuple
P = 〈S,A = ×ni=1{Ai}, T,R,Ω = ×i = 1n{Ωi}, O, γ, h, b0〉. The components
are similar to those of a POMDP with the following differences: each agent i
has its own set of actions Ai and its own set of observations Ωi. These sets
define the joint-action set A = A1 × A2 × .. × An and the joint-observation
set Ω = Ω1 × Ω2 × . . . × Ωn. All other elements are defined identically as in
a POMDP w.r.t. the set of joint-actions and joint-observations. We assume Ai
always contains a no-op action that does not modify the state of the world nor
generates any meaningful observation. (This essentially implies that there are
no exogenous processes.) We also use the no-ops for reward-calibration: a joint
action consisting of no-ops only has a reward of 0. The agents share the initial
belief state, b0. However, during execution, agent i receives only its component

4 Abdoo et al.

ωi of the joint observation ω = (ω1, . . . , ωn). A solution to a Dec-POMDP is a
set of policies ρi (as defined for POMDP), one for each agent.

Dec-POMDPs can use a factored specification [15], although most work to
date uses the flat-state representation. An important element of a factored
specification is a compact formalism for specifying joint-actions. If each agent has
k actions, then, in principle, there are O(kn) possible joint actions. Yet, in many
problems of interest most actions do not interact with each other. If a ∈ Ai is an
action of agent i, we identify a with the joint action (no-op, . . . , a, . . . ,no-op).
Actions ai ∈ Ai, aj ∈ Aj are said to be non interacting, if their effect distribution,
when applied jointly (i.e., (no-op, . . . , ai, . . . , aj . . . ,no-op)), is identical to their
effect distribution when applied sequentially. Thus, our specification language
focuses on specifying the effects of single-agent actions and specific combinations
of single-agent actions that interact with each other, which we call collaborative
actions [2]. As above, we identify the collaborative action of a group of agents
with the joint action in which all other agents perform a no-op. Then, we can
decompose every joint action into some combination of non-interacting single-
agent and collaborative actions, defining its dynamics.

Example 1. Our running example consists of a 2-cell box-pushing domain, with
cells L(left) and R(right), two agents, and two boxes. B1 is light, and B2 is heavy
(Figure 1). The state is composed of 4 state variables: the location of each box
– (XB1, XB2) – and the location of each agent – (XA1, XA2). In addition, there
are two observation variables for each agent (ωi1, ω

i
2). ωij , indicates to Agenti

whether it is co-located with Bj . Initially, A1 and B1 are at L and A2 and B2

are at R. The goal is to swap the boxes, i.e. (XB1 = R,XB2 = L). Agents can
move, push a box, or sense their current cell for a box. Move and Push can be
done in any direction. Push actions fail with some probability, and a single-agent
cannot succeed pushing the heavy box. The action in which both agents push a
heavy box is modeled as a collaborative-push action.

Public, Private and Relevant Variables: A state variable Xi is affected by a if
there is some state s for which there is a non zero probability that the value of
Xi changes following a. We denote the variables affected by a by eff (a). Xi is
affected by agent j, if Xi ∈ eff (a) for some a ∈ Aj . Xi is called public if it is
affected by two or more agents, that is, there exist j 6= k and actions a ∈ Aj ,
a′ ∈ Ak such that Xi ∈ eff (a) ∩ eff (a′). An action a is called public if one of its
effects is public. Otherwise, a is private. Thus, collaborative actions are always
public. Sensing actions are private, by nature. Here, we also assume they are
non-collaborative, i.e., they affect one agent’s observation variables only.

A state variable Xi is an influencer of a if a behaves differently given different
values of Xi. That is, if there are two states s1, s2 that differ only in the value of
Xi such that R(s1, a, s′) 6= R(s2, a, s

′), or T (s1, a, s′) 6= T (s2, a, s
′) for some state

s′, or in the case of sensing actions, O(a, s1, o) 6= O(a, s2, o) for some observation
o . We denote influencers of a by inf (a). We refer to the union of the influencers
and effects of a as the relevant variables of a, denoted rel(a).

Team-Imitate-Synchronize for Solving Dec-POMDPs 5

Example 2. In our running example, XB1 and XB2 are the public variables, as
they are the effects of both agents’ push actions. XA1, XA2 are private variables
of agent 1 and agent 2, respectively, as they are the effect of a single agent’s move
action. ωij is private to Agenti, being the effect of its sensing actions. Actions
move and sense are private, while the push actions are public.

3 TIS – Team-Imitate-Synchronize

We begin with a high level description of the major components of TIS. Then,
we explain each step in more depth.

1. Team Problem: Given a Dec-POMDP model P as input, this step out-
puts a near-optimal policy πteam for the team POMDP Pteam. Pteam is identical
to P but ignores the underlying multi-agent structure. That is, actions and ob-
servations in Pteam are the joint actions and the joint observations of P with the
same transition and reward function. Pteam models a single agent that controls
all agents and receives the joint observations. We obtain πteam by solving Pteam
using a POMDP solver. This can be a model-based solver or an RL algorithm
that can handle POMDPs, such as DRQN [8].

2. Generate Tree or Traces: Some POMDP solvers output a policy tree.
If this tree is very large, we approximate the set of path in it by simulating πteam
on Pteam, obtaining a set T of execution traces.1

3. Imitate: Given the Dec-POMDP model P and the traces T as input,
in this step every agent tries to imitate its behavior in the team policy. This
is a non-standard imitation learning problem. First, each agent has access to
less information than the expert (=team). Second, the agent can sometimes
obtain additional information by applying sensing actions that are not part of
the team policy. Third, how good one agent’s imitation policy depends on how
other agents imitate their part of the team policy. While this can be a very
interesting imitation learning problem, instead, in this paper we use our model
to construct an imitation POMDP Pi, for each agent i. Pi’s dynamics are similar
to Pteam, ignoring certain variables and actions that are not relevant for agent
i, and the observations available to other agents. Pi rewards the agent when its
action choice is similar to that which appears in a comparable trace of πteam.
Its solution, π′i, is the basis for i’s policy.

4. Synchronize: Given the agents’ policies, {π′i}ni=1, generate a policy graph
for each agent and compute modified single-agent policies {πi}ni=1 aiming at
(probabilistically) better coordination between agents. This is done by inserting
additional no-op actions to agents’ policies to affect the timing of action execu-
tion. Notice that in Dec-POMDPs, one can always insert a no-op action. Whether
this helps or not depends on what other agents do at the same time. Specifically,
we focus on improving the probability that individual parts of a collaborative

1 Our implementation uses the simulation function of the SARSOP solver. We pre-
compute sample size based on concentration bounds that ensure that distribution
over initial state will match the true belief state.

6 Abdoo et al.

Table 1: Two example traces. P, S,M,CoP abbreviate Push, Sense, Move,
Collaborative-Push

XA1 XA2 XB1 XB2 a1 a2 ω1
1 ω

1
2 ω

2
1 ω2

2

1.1 L L R R PushRight(A1, B1) no-op φ φ φ φ
1.2 L R R R SenseBox(A1, B1) no-op no φ φ φ
1.3 L R R R MoveRight(A1) no-op φ φ φ φ
1.4 R R R R CPushLeft(A1, B2) CPushLeft(A2, B2) φ φ φ φ
1.5 R R R L no-op SenseBox(A2, B2) φ φ φ no

2.1 L L R R PushRight(A1, B1) no-op φ φ φ φ
2.2 L R R R SenseBox(A1, B1) no-op no φ φ φ
2.3 L R R R MoveRight(A1) no-op φ φ φ φ
2.4 R R R R CPushLeft(A1, B2) CPushLeft(A2, B2) φ φ φ φ
2.5 R R R R no-op SenseBox(A2, B2) φ φ φ yes
2.6 R R R R CPushLeft(A1, B2) CPushLeft(A2, B2) φ φ φ φ
2.7 R R R L no-op SenseBox(A2, B2) φ φ φ no

action will be synchronized and that the action order in πteam between agents
is maintained. {πi}ni=1 is the final output of the entire algorithm.

Steps 1 and 2 are straightforward. Below, we detail Steps 3 and 4.

Example 3. A possible team policy for our example is shown in Figure 1a. Edges
are labeled by the joint observations of the team. A1 begins by pushing B1 to
the right, then senses whether it succeeded. It then moves right to assist A2 to
push the heavy box, B2, to the left. A2 then senses for success. As observations
are shared in Pteam, A1 is also aware of the resulting observation. Two example
traces are shown in Table 1.

3.1 Generating the Individual Agent POMDPs

We now aim to generate agent policies that, combined, will behave similarly to
the team policy. This can be achieved in several ways. For example, we could
try to imitate the behavior based on the agents’ individual belief state. Here,
we suggest a heuristic approach, motivated by a simple intuition. We design for
each agent i a POMDP Pi, in which the world dynamics remains the same, but
agent i is rewarded whenever it imitates its role in the team policy. That is, i is
rewarded when executing an action similarly to the public plan.

We focus on imitating public actions as they influence other agents. We wish
to reward an agent when it executes a public action in a context in which it
was applied in the collected traces T. Hence, we define a context c for an action
a, and reward i only when it applies a in c. Public actions not encountered in
T are not relevant for imitation, and thus we remove them from the imitation
POMDPs, Pi. For private actions, we maintain the same reward as in P .

Defining the context in which a public action a is applied in a trace to be the
state it was applied in, is too narrow. We must generalize the context to capture

Team-Imitate-Synchronize for Solving Dec-POMDPs 7

only the relevant variables within the state. To better generalize from the states
at which a was executed in T, we remove irrelevant variables from the context.

Definition 1. The context c of action a of agent i in state s is the projection of
s to the set of variables consisting of all public variables and any private variable
of i relevant to a. The pair 〈c, a〉 is called a contexted action (CA).

CAi, the set of contexted actions for agent i, is the union of all contexted
actions 〈c, a〉 for all state,action pairs for agent i appearing in any trace in T.

Example 4. The public actions of A1 in the trace elements shown in Table 1 are
PushRight(A1, B1) in 1.1,2.1, and CPushLeft(A1, B2) in 1.4,2.4,2.6. These ac-
tions appear multiple times in identical contexts. Context of PushRight(A1, B1)
contains the public variable XB1, XB2, and XA1 which is the only private rele-
vant variable of PushRight(A1, B1). The context of CPushLeft(A1, B2) for A1 is
identical. Thus: CA1 = {〈〈XA1 = L,XB1 = L,XB2 = R〉,PushRight(A1, B1)〉,
〈〈XA1 = R,XB1 = R,XB2 = R〉,CPushLeft(A1, B2)〉}. Also, CA2={〈〈XA2 =
R,XB1 = R,XB2 = R, 〉,CPushLeft(A2, B2)〉}.

Encouraging the execution of a public action in an appropriate context is
insufficient. We must also discourage execution of public actions outside their
context. Public actions modify public variables’ values, which may cause future
actions by other agents to have undesirable outcomes that differ from the team
plan. Hence, we associate negative reward with out-of-context public actions.

This must be done carefully. Pi contains the non-sensing actions of all agents.
This helps the synchronizing agent i’s policy with those of other agents. That is,
the agent has to simulate in its policy actions of other agents that are needed for
its own reward. Thus, it must time its actions appropriately w.r.t. other agents’
actions (simulated by it), which leads to better coordination. However, Pi does
not contain the sensing actions of other agents. Therefore, we should not penalize
it for performing actions when the value of a variable it cannot gain information
on is “wrong”. For this reason, we define a relaxed context.

Definition 2. Let Xi
obs be the set of variables that agent i can learn about

through, possibly noisy, observations. The relaxed context c′ of a contexted action
〈c, a〉 is the projection of c to the set of public variables and Xi

obs.

That is, c′ is obtained from c by ignoring some context variables. Therefore,
¬c′ → ¬c, and fewer states are associated with this penalty than had we applied
it to any state not satisfying c. This leads to the following definition of the
factored single-agent POMDP Pi, solved by agent i.

Actions: Pi contains all private non-sensing actions of all agents, all public
non-sensing actions that appeared in some trace of the team plan, and all the
sensing actions of agent i.

Transitions: the transition function of public actions and agent i’s private
actions is identical to that of the original problem definition. Private actions of
other agents are determinized, leveraging our assumption about a desired effect
for actions. The deterministic version of a always achieves its desired effect. This
relaxation is not essential, but reduces the difficulty in solving Pi.

8 Abdoo et al.

State and Observation Variables: Observations of other agents do not
appear in Pi. State variables that correspond only to the removed observations
are also ignored, as they do not affect the transition functions of the actions in
Pi. All other variables appear in Pi.

Rewards: (1) The reward for a private action is identical to its reward in the
original Dec-POMDP and in Pteam. (2) The reward R(s, a) for a public action
a in state s is defined as: (i) if s |= c for some context c such that 〈c, a〉 ∈CAi
R(s, a) is positive. (ii) If s 6|= c′ for any relaxed context c′ of some contexted
action 〈c, a〉 ∈CAi then R(s, a) is negative.

We use the following method for defining reward values:

1. Reward for an in-context action. We use the following steps:
(a) Associate a value Rτ with each trace, reflecting the utility of the trace.

Let τ be a trace, R+
τ and R−τ the sum of positive and negative rewards,

respectively, in τ .
(b) Distribute R+

τ among the agents based on their relative contribution to
attaining this utility, yielding Riτ for each i. Let R−,iτ be the total negative
reward in τ associated with agent i’s actions only (including collaborative
actions). Define Riτ = R+

τ ·
R−,i
τ

R−
τ
. This is the relative portion of reward

we want to allocate to agent i’s actions in the trace.
(c) For each agent and trace, distribute Riτ to each instance e of the agent’s

public actions in this trace, yielding Riτ,e. Let ej = (sj , aj , s
′
j , oj , rj)

be the jth step in trace τ . We distinguish between contributing and
non-contributing steps (defined below). If ej is non-contributing then
Riτ,e = 0. Otherwise, Riτ,e is defined using the following process:
i. Associate a cost ce with e (defined below).
ii. Compute the relative weight, we, of step e in τ : we = ce

R−,i
τ

.
iii. Define Riτ,e = we ·Riτ .

(d) Associate with 〈c, a〉 the average value rc,a of Riτ,e over all traces τ ∈ T,
and all steps e ∈ τ such that e involves the execution of a in a state
satisfying c. The reward assigned to a CA in the model is the average
reward rCA of steps in which it appears in the traces. Formally:

rCA =

∑
τ∈T

∑
e∈τ∧proji(e)=CA

Riτ,e

|{e|e ∈ τ, τ ∈ T, proji(e) = CA}|
(1)

proji(e) is the contexted action obtained when projecting the state and
action of e w.r.t. agent i.

2. Penalty for an out-of relaxed-context action. We associate with the execution
of an action in a state that does not satisfy any of its relaxed contexts,
a negative reward −maxca∈CAi rca · |CAi|, an upper bound on the sum of
rewards that can be achieved from applying contexted actions.

To complete the description above, step ej = (sj , aj , s
′
j , oj , rj) is a contribut-

ing step of agent i, if aj contains an action of agent i, and either (i) sj did not

Team-Imitate-Synchronize for Solving Dec-POMDPs 9

appear earlier in the trace, or (ii) rj > 0, i.e., a positive reward was gained. To
define ce, we iterate over the steps in τ , accumulating the step costs (negative
rewards). When encountering a contributing step of agent i, we assign it with
the accumulated cost, and reset the accumulation.

Example 5. We now construct A1’s single-agent problem. We denote the CAs
from the previous example by ca1, ca2, and their reward with rca1 , rca2 . We follow
the projection stages one by one: (1) Push actions are the only public actions and
we leave only the ones observed in traces: PushRight(A1, B1),CPushLeft(A1, B2),
CPushLeft(A2, B2). All other Push actions are removed. Notice that we keep A2’s
CPushLeft(A2, B2) as A1 might need to simulate it. (2) We remove the two sens-
ing actions of A2 and its observation variables ω2

1 , ω
2
2 . (3) We leave all private

actions of both agents. They are deterministic to start with, so no change is
needed. (4) We set rewards rca1 , rca2 to ca1 and ca2 respectively. (5) We set a
penalty of −2 ·max(rca1 , rca2) to the remaining public actions, applied in any
context except for the CA’s relaxed contexts. The relaxed context for A1’s CAs
is: {〈〈XA1 = L〉,PushRight(A1, B1)〉, 〈〈XA1 = R〉,CPushLeft(A1, B2)〉}. (6) The
reward for pushing the boxes to the target cells is set to 0, as we reward the
agent only for doing its public actions in context.

3.2 Policy Adjustment and Alignment

We now solve the agent specific POMDPs Pi and obtain agent specific policies
π′i, in the form of a policy graph for each agent. These policy graphs may contain
private actions of other agents, and are likely not well synchronized. For example,
there may be a low probability that collaborative actions are executed jointly at
the same time. We now adjust the policies to obtain better synchronization.

First, we remove the private actions of all other agents from i’s policy graph,
introduced to "simulate" the behavior of other agents in Pi. Next, we attempt
to align policies to increase the probability that actions of different agents occur
in the same order as in the team plan. An action a1 of agent 1 that sets the
context value of a variable in the context of action a2 of agent 2 should be
executed before a2. Collaborative actions should be executed at the same time
by all participating agents. As each policy is local to an agent, and action effects
are stochastic, one cannot guarantee perfect synchronization. However, using a
few heuristics, we attempt to increase the probability of synchronization.

For each public action a in an agent’s policy graph we select all simple paths
from the root to a, and map them to their identifiers, where an identifier of a
path is the sequence of public actions along it. Our goal is to equalize execution
time of public actions occurrences with a shared identifier. For a public action
a with a shared identifier in multiple agents’ graphs: let l be the length of the
longest simple path to the action in all relevant policy graphs, including private
actions. In any graph where the length is less than l, we add no-op actions
prior to a to delay its execution. We use an iterative process — we begin with
the action with the shortest identifier (breaking ties arbitrarily), and delay its
execution where needed using no-ops. Then, we move to the next action, and so

10 Abdoo et al.

(a) πteam (b) π′
1 (c) π1 (d) π′

2 (e) π2

Fig. 1: A 2-cell box pushing problem, and the resulting plan graphs. The agents
must switch between the boxes. Box B1 is light, B2 is heavy and must be pushed
by the two agents jointly.

forth. After the alignment, we replace in each agent’s aligned policy graph all
actions of other agents with a no-op.

Finally, we handle the problem of a potential “livelock” between collabo-
rative actions. Consider a scenario where two agents need to perform a non-
deterministic collaborative action whose effect can be directly sensed. Each agent
executes its part of the action and then senses whether it succeeded. Due to the
stochastic nature of previous actions, one agent may execute the collaborative
action one step before the other. In that case, it will sense its failure and repeat,
with the second agent acting identically, one step later. To handle this, given a
collaborative action with n collaborating agents, we modify the graph so that
every collaborative action that is part of a cycle is repeated by every agent for n
times instead of just once, preventing this livelock. This may be non-beneficial
if a cost is associated with a collaborative action. To decide whether to apply
it, during the reward definition stage, for each CA that contains a collaborative
action, we calculate the expected reward of repeating the action, and sum it over
all CAs. If the sum is positive, we enable the method.

Example 6. Figures 1b, 1d show plan graphs generated from the agent POMDPs.
Here, edges are labeled by single-agent observations. In π′1, the sensing action
allocated to A2 in πteam is replaced by a sensing action of A1 (node 5). In
π′2 appear the simulated actions of A1 (nodes 1 and 2). Figures 1c, 1e show
the policy graphs after the alignment and adjustments procedure. π1 shows the
repeated collaborative push action for live-lock avoidance (nodes 4 and 5). In π2
the simulated actions of A1 are replaced by no-op (nodes 1 and 2), and another
no-op is added for alignment with π1 (node 3).

Team-Imitate-Synchronize for Solving Dec-POMDPs 11

4 Empirical Evaluation

We evaluate our algorithm on 3 domains: two variations of the popular cooper-
ative Box Pushing, Dec-Tiger and Rock Sample. TIS uses SARSOP [9] as the
underlying POMDP solver.

We compare TIS, with 3 Dec-POMDP solvers, GMAA*-ICE [13], JESP [10],
and DICEPS [12] using MADP-tools [14]. The GMAA*-ICE solver provides
optimality guarantees. JESP searches in policy space, performing alternating
maximizations using dynamic programming. DICEPS is an approximate method,
which does not excel on smaller domains, but presumably can scale to larger
domains.2 We also compare TIS to 3 state-of-the-art MARL algorithms: two
versions of WQMix [16], and QTRAN [18] All experiments were conducted on a
PC with Intel-core i7-5500U CPU @ 2.40GHz with 4 cores and 7.7GB of memory.
TIS, GMMA-ICE, and JESP were run under Windows-11 and the others were
run under Ubuntu 20.04.1.

GMAA*-ICE and DP-JESP require an horizon specification, specified under
column H. TIS computes a policy for an unbounded horizon and its H-value
specifies the average number of steps until reaching the goal state. DICEPS uses
restarts, and repeatedly returned an overflow error. To generate comparable
running times to TIS, we rerun it multiple time, and used the maximal score
over these runs, which is equivalent to simply letting it run longer.

For GMAA*-ICE and DP-JESP we report the computed policy value. For
TIS the value column provides the average discounted accumulated reward over
1000 simulations truncated at the relevant horizon. The avg column denotes
average number of steps for all agents to reach the goal state. For MARL algo-
rithms, we measure maximum average discounted reward over a number of test
runs. The discount factor was set to γ = 0.99.

Planners were given 1 hour to solve each 〈configuration, horizon〉 pair. MARL
algorithms were given longer times. We report running times in seconds.

4.1 Domains

Box Pushing: agents on a grid must push boxes to their destinations [6,
5]. Light boxes can be pushed by a single agent. Heavy boxes must be pushed
collaboratively by two agents. Agents can sense for a box at the present location.
The initial box locations are uncertain. We also consider a variant of this domain
in which we add a penalty when a push action is performed in a cell with no box.
Problem names are composed of 5 elements, specifying width, height, number of
agents, number of light boxes, and number of heavy boxes.

Dec-Tiger: Agents must open a door avoiding a tiger [11]. The tiger’s loca-
tion resets following a door opening. Collaboratively opening a tiger door results
in a lower penalty compared to single agent opening actions. Agents have noisy

2 DICEPS, while not new, was recommended to us, independently, by two senior
researchers as still being a state-of-the-art approximate solver.

12 Abdoo et al.

Table 2: Results for Collaborative Dec-Tiger on state-of-the-art Dec-POMDP
and MARL solvers and TIS. Best overall value for each problem in bold.

Collaborative Dec-Tiger, |S| = 8, |A| = 5, I = 〈(0, 1, 0), (0, 1, 1)〉
H DP-JESP GMAA*-ICE DICESP OW QMix QTran TIS

Time Value Time Value Time Value 300s 3600s 300s 3600s Time Value
3 0.42 1.96 0.24 11.15 121.54 0 -7.84 7.44 0 2.55 6.03 11.10
4 33.15 10.05 841.67 11.03 155.98 3.2 -7.87 13.602 0 0.958 " 9.12
5 1792.22 5.78 × - 206.56 4.03 1.68 14.454 0 4.08 " 8.56
6 × - × - 243.07 5 2.61 15.473 0 1.96 " 9.05
10 × - × - x x -17.79 18.136 0 0.758 " 10.19
20 × - × - x x -13.91 20.058 0 1.79 " 16.42
30 × - × - x x -19.43 18.954 0.58 54.907 " 20.10
40 × - × - x x -11.702 26.128 0 10.49 " 24.62

observations on the tiger’s location. We use a larger Dec-Tiger version that re-
quires agents to move on a grid [1].

Decentralized Rock-Sample: We suggest a new variant of Mars explo-
ration problem [17], where two rovers move on a grid that contains rocks that
must be sampled . The grid is divided into overlapping control areas, one per
rover. The rovers can move around the grid, sense the rocks’ quality, which is
initially unknown, and sample them. Agents are rewarded for sampling all the
good rocks in their control area, but penalized directly for sampling a bad qual-
ity rock. Once a good quality rock is sampled, it turns bad. Rovers have a long
range sensor, whose quality deteriorates with increased distance from the rock.
Problem names are composed of the grid size and the number of rocks.

These problems call for solutions of different types. In Collaborative Dec-
Tiger, the problem resets after one of the doors is opened and so the planning
horizon can be short, there are no interdependent actions (i.e., ones setting up
conditions for the execution of others), but tight coordination in the execution of
door opening actions is desirable. Collaborative Box-Pushing rewards the agents
for pushing a box to the target tile, requiring aggregating a chain of properly-
directed pushes of a box to a single reward. With light boxes, a simple plan can
use a single agent. Yet, efficient plans make use of the different agent positions
to reduce (costly) move actions. With heavy boxes, agents must push the box
at the same time, requiring even better coordination. The second box-pushing
variant calls for trading off the cost of additional sensing with the penalty for
moving a non-existent box. Decentralized Rock-Sampling rewards an agent only
for achieving all of its objectives, which makes large-horizon planning ability
crucial, giving no reward at all to partial solutions.

4.2 Results

Table 2 describes the results for Dec-Tiger. GMAA*-ICE, which is an optimal
solver, produces the best policy for the shortest horizon, but cannot scale beyond

Team-Imitate-Synchronize for Solving Dec-POMDPs 13

Table 3: TIS vs. Dec-POMDP solvers and vs. MARL solvers on Box-Pushing
(BP) and Rock-Sample (DRS). Best value per problem in bold.

Collaborative Box-Pushing
Problem DP-JESP GMAA*-ICE DICEPS TIS

Name |S| |A| H Time Value H Time Value H Time Value Avg Time Value
3,1,2,1,1 81 16 4 1861.30 279 4 30.23 330 4 221.71 0 15 6.07 613
2,2,2,0,2 256 225 3 267.24 271 3 160.18 320 3 348.56 0 9 7.08 348
2,2,2,0,3 1024 400 2 59.06 0 2 1053.27 414 2 514.09 0 17 125.50 514
1-Penalty 81 16 3 25.95 0 4 79.28 265 - - - 15 8.54 587
2-Penalty 256 225 3 495.61 135 3 446.03 214 - - - 9 11.66 354
3-Penalty 1024 400 2 38.70 0 2 1054.5 327 - - - 15 31.09 510

OW QMIX CW QMIX QTRAN TIS
H 300s 7200s H 300s 7200s H 300s 7200s Avg Time Value

3,1,2,1,1 81 16 20 120.27 1165 20 -8.91 1177 20 345.17 348 15 6.07 614
2,2,2,0,2 256 225 15 -3.57 -1.98 15 0 0 15 0 -0.79 9 7.08 349
2,2,2,0,3 1024 400 20 -2 0 20 0 -2 20 -0.8 0 17 125.50 514
1-Penalty 81 16 20 -36.32 1144 20 76.97 1191 20 -77.94 372 15 8.54 587
2-Penalty 256 225 15 0 -3.9 15 0 0 15 0 0 9 11.66 354
3-Penalty 1024 400 20 0 0 20 0 0 20 -35.62 -29 15 31.09 510
3,2,3,0,2 7776 3375 20 0 0 20 0 - 20 0 0 12 89.83 276
3,2,3,0,3 46656 8000 20 0 0 20 0 0 20 0 0 18 2210.28 406
3,3,2,2,1 59049 324 20 -4.37 -2 20 0 0 20 -72.76 0 39 3014.04 322

Decentralized Rock-Sampling
Problem DP-JESP GMAA*-ICE DICEPS TIS

12,3 512 90 3 314.35 224 3 82.86 739 3 2018 755 18 1725.80 1028
12,4 1024 100 3 1081.41 518 3 2867.06 508 3 2763 495 20 2438.82 1048
20,4 2304 100 3 1838.84 111 3 - - 3 2868 514 16 2434.88 1158

OW QMIX CW QMIX QTRAN TIS
H 300s 7200s H 300s 7200s H 300s 7200s Avg Time Value

12,3 512 90 25 -56.51 474 25 -54.42 509 25 -34.28 609 18 1725.80 1028
12,4 1024 100 25 -45.6 198 25 -12.00 203 25 0 617 20 2438.82 1048
20,4 2304 100 25 -55.20 452 25 -45.63 219 25 -40.05 327 16 2434.88 1158
20,6 9216 143 25 -19.34 135 25 -43.85 20 25 -21.83 408 21 2537.10 1121
28,6 16384 143 25 -29.23 47 25 91.78 24 25 -1.99 0 23 3310.95 1046

4 steps. JESP scales to horizon 5, and DICEPS to horizon 6, but they produce
policies of much lower quality than TIS, which can handle horizon 40 in about
6 seconds. DICESP, which should be able to scale well, terminated with an
error after roughly 10-20 seconds for horizons 10 and higher. For the MARL
algorithms we show results for two running times: 300 and 3600 seconds. In
this domain, OW-QMix was able to perform better than TIS, but only when
given 3600 seconds, as opposed to 6 for TIS. In the horizon 30 case, QTran
was able to perform much better than TIS, but performed far worse on other
horizons. Except for this case, TIS performed comparatively to, or better than
other MARL algorithms but required much less time. As can be seen from the

14 Abdoo et al.

Table 4: Comparing to optimal on small box pushing with |S| = 8 and |A| = 16.
Max row is for maximal value for any horizon. ArgMax Horizon in parenthesis.

GMAA*-ICE TIS
H Time Value Time Value
4 1.15 426.91 3.40 306.62
5 2.09 438.34 " 301.56
6 6.97 448.19 " 357.44
7 8.98 450.97 " 412.54

Max 17.1 454.70 (25) 3.40 412.54 (7)

results for 300 seconds, MARL algorithms cannot compete with TIS as far a
policy quality with shorter running times, even when given 50X running time.
CW-QMix was always dominated by OW-QMix and is therefore omitted.

Table 3 shows results for Box Pushing and Rock Sample. Both DP-JESP and
GMAA*-ICE could not handle horizons larger than 3, while TIS can consider
much longer action sequences, and, as such, collect much higher rewards. As
noted above, Decentralized Rock-Sampling requires much lengthier horizons to
achieve any reward, and TIS’s advantage here is pretty clear. Among the MARL
algorithms, QMix was able to produce much better results on one problem in-
stance (again, requiring orders of magnitude more time), but MARL solvers
failed on harder Box Pushing domains that contain more heavy boxes that re-
quire a collaborative push action. Similar results were obtained with the alter-
native reward function, punishing attempts to push a non-existent box. TIS is
consistently better and faster than the MARL solvers on Rock Sample, again due
to MARL difficulty in learning policies that require more complex coordination.

In the Box Pushing and Rock Sample we can also test the scalability of TIS.
These are domains that current Dec-POMDP solvers cannot handle, and hence
we only provide a comparison with MARL algorithms. As can be seen, TIS can
consider very long horizons even in these significantly larger problems. The size
of the hardest configuration, BP-33221, approaches the maximal problems that
the single agent POMDP solver SARSOP can solve, indicating that TIS could
scale to even larger problems given a stronger POMDP solver. We are not aware
of any other Dec-POMDP solver that is able to approach state sizes even close
to these on these domains: over 59000 in Box Pushing and over 16000 in Rock
Sample. The MARL solvers were unable to generate reasonable solution within
7200 seconds for these larger problems. (For this reason, we do not provide results
for shorter running times). To complete the picture, we note that in the hardest
Box-Pushing and Rock-Sample instances, TIS was able to achieve the goal in
100% of all trials for Box Pushing and in 97% of all trials for Rock Sample.

TIS contains many heuristic choices that may cause it to obtain sub-optimal
policies. To measure this, Table 4 focuses on a small box pushing problem that
GMAA*-ICE can solve optimally. We see that TIS manages to produce rea-
sonable results that are about 10% worse on the larger horizons. Furthermore,
in Dec-Tiger, which calls for strong agent synchronization, TIS does virtually

Team-Imitate-Synchronize for Solving Dec-POMDPs 15

the same as GMAA*-ICE on horizon 3. On medium size horizons TIS performs
worse, probably because there is more opportunity for unsynchronized actions.

4.3 Discussion

As we observed above, over the 3 domains that we experiment with, TIS is
substantially better than all other solvers. It produces policies which are close
to optimal on smaller problems with shorter horizons, and scales many orders of
magnitude beyond existing Dec-POMDP solvers.

In comparison to state-of-the-art MARL algorithms, TIS is much faster, and
often returns much better policies. Of course, MARL algorithms do not receive
the model as input and must compensate for it by running many trials. Neverthe-
less, we provide this comparison for two reasons. First, there is a perception that
RL algorithms are a magic bullet and are the state-of-the-art for stochastic se-
quential decision making. Second, model-free RL algorithms are often suggested
as an alternative to model-based solvers on domains with large state spaces,
as they do not need to maintain and query an explicit model, which in larger
problems can be difficult to represent. While this is certainly true, the time and
resources required to compensate for the lack of a model can be substantial. As
we have shown here, domains that require better coordination are still challeng-
ing for state-of-the-art MARL solvers. In longer (non-exhaustive) experiments
conducted on QMIX, the results on these domains did not improve even given
over 10 hours. Thus, we think that it can be safely concluded that when a model
is available and a plan is needed quickly, TIS is currently the best option.

Finally, we briefly discuss the MCEM Dec-POMDP solver [19]. This algo-
rithm is an example of an approximate solver that can scale to huge problems.
Indeed, MCEM was able to solve a grid-based traffic problem with 2500 agents
and roughly 10100 states, which is certainly remarkable. MCEM excels on this
domain because it is very loosely coupled, and a simple local controller per agent
can generate good behavior. MCEM exploits these domain properties to truly
factor the problem (aided by a hand-coded MDP policy for policy exploration).

TIS cannot handle such a domain because the team problem would be too
large to describe formally, and no POMDP solver can scale to such problem
sizes. On the other hand, [19] also tested MCEM on standard Dec-POMDP
benchmarks that do not enjoy such weak coupling, and in which stronger implicit
coordination between the agents’ actions is required. In these domains, MCEM
was unable to scale to the problems sizes TIS handles. For example, the largest
box pushing problem solved by [19] had 100 states, and the largest Mars Rover
problem solved (which is quite similar to rock-sample) had 256 states compared
with 59K and 16K states, respectively, for TIS, limited only by the capabilities
of the underlying POMDP solver.

5 Conclusion

TIS is a general approach for solving Dec-POMDPs. We described a particular
implementation that solves Dec-POMDP by solving multiple POMDPs. First,

16 Abdoo et al.

we solve a team POMDP – a single-agent relaxation of the Dec-POMDP. Then,
we solve an imitation POMDP for each agent that seeks to generate a policy
that imitates that agent’s behavior in the team policy. Finally, policy graphs are
aligned to improve synchronization. We report promising empirical results. Our
implementation of TIS solves significantly larger problems and horizons than
existing approximate Dec-POMDP solvers on standard benchmarks in which
the problem is not very loosely coupled. It compares well to near-optimal solvers
on the problems they can solve, and is much better than MARL algorithms on
domains that require some agent coordination.

While the high level flow of TIS is attractive, the particular implementation
of the steps is often very specific, not unlike many RL/MARL/DL approaches.
In particular, our current synchronization step relies heavily on no-op insertion.
The ability to use no-ops implies that the agents are the sole cause of change
in the environment. Yet, one exciting aspect of the TIS schema is its generality,
and the many exciting opportunities it offers for instantiating each element, in
more general and more effective ways.

References

1. Amato, C., Bernstein, D.S., Zilberstein, S.: Optimizing fixed-size stochastic con-
trollers for pomdps and decentralized pomdps. JAAMAS 21(3), 293–320 (2010)

2. Bazinin, S., Shani, G.: Iterative planning for deterministic qdec-pomdps. In: GCAI-
2018. 4th Global Conference on Artificial Intelligence. vol. 55, pp. 15–28 (2018)

3. Bernstein, D.S., Givan, R., Immerman, N., Zilberstein, S.: The complexity of decen-
tralized control of markov decision processes. Mathematics of operations research
27(4), 819–840 (2002)

4. Boutilier, C., Dean, T., Hanks, S.: Decision-theoretic planning: Structural assump-
tions and computational leverage. J. Artif. Int. Res. 11(1), 1–94 (1999)

5. Brafman, R.I., Shani, G., Zilberstein, S.: Qualitative planning under partial ob-
servability in multi-agent domains. In: AAAI’13 (2013)

6. Carlin, A., Zilberstein, S.: Value-based observation compression for dec-pomdps.
In: Proceedings of the 7th international joint conference on Autonomous agents
and multiagent systems-Volume 1. pp. 501–508 (2008)

7. Dietterich, T.G.: Hierarchical reinforcement learning with the maxq value function
decomposition. JOURNAL OF AI RESEARCH 13, 227–303 (2000)

8. Hausknecht, M.J., Stone, P.: Deep recurrent q-learning for partially observable
mdps. In: 2015 AAAI Fall Symposium. pp. 29–37. AAAI Press (2015)

9. Kurniawati, H., Hsu, D., Lee, W.S.: Sarsop: Efficient point-based pomdp planning
by approximating optimally reachable belief spaces. In: In Proc. Robotics: Science
and Systems (2008)

10. Nair, R., Tambe, M., Yokoo, M., Pynadath, D., Marsella, S.: Taming decentral-
ized pomdps: Towards efficient policy computation for multiagent settings. In:
IJCAI’03. pp. 705–711 (2003)

11. Nair, R., Tambe, M., Yokoo, M., Pynadath, D., Marsella, S.: Taming decentralized
pomdps: Towards efficient policy computation for multiagent settings. In: IJCAI.
vol. 3, pp. 705–711 (2003)

12. Oliehoek, F., Kooij, J., Vlassis, N.: The cross-entropy method for policy search in
decentralized pomdps. Informatica 32, 341–357 (01 2008)

Team-Imitate-Synchronize for Solving Dec-POMDPs 17

13. Oliehoek, F.A., Spaan, M.T.J., Amato, C., Whiteson, S.: Incremental clustering
and expansion for faster optimal planning in decentralized POMDPs. JAIR 46,
449–509 (2013)

14. Oliehoek, F.A., Spaan, M.T.J., Terwijn, B., Robbel, P., Messias, J.a.V.: The madp
toolbox: An open source library for planning and learning in (multi-)agent systems.
J. Mach. Learn. Res. 18(1), 3112–3116 (Jan 2017)

15. Oliehoek, F.A., Spaan, M.T.J., Whiteson, S., Vlassis, N.: Exploiting locality of
interaction in factored dec-pomdps. In: AAMAS. p. 517–524 (2008)

16. Rashid, T., Farquhar, G., Peng, B., Whiteson, S.: Weighted QMIX: expanding
monotonic value function factorisation for deep multi-agent reinforcement learning.
In: Advances in Neural Information Processing Systems (2020)

17. Smith, T., Simmons, R.: Point-based pomdp algorithms: improved analysis and
implementation. In: UAI. pp. 542–549 (2005)

18. Son, K., Kim, D., Kang, W.J., Hostallero, D., Yi, Y.: QTRAN: learning to factorize
with transformation for cooperative multi-agent reinforcement learning. In: ICML.
pp. 5887–5896 (2019)

19. Wu, F., Zilberstein, S., Jennings, N.R.: Monte-carlo expectation maximization for
decentralized pomdps. In: IJCAI. pp. 397–403 (2013)

