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Abstract. Multi-typed Objects Multi-view Multi-instance Multi-label
Learning (M4L) deals with interlinked multi-typed objects (or bags) that
are made of a set of instances, represented with heterogeneous feature
views and annotated with a set of non-exclusive multiple labels. M4L is
more general and powerful than the typical Multi-view Multi-instance
Multi-label Learning (M3L) which lacks the power of jointly modelling
the naturally interlinked multi-typed objects in the physical world. How-
ever, the current M4L methods equally treat multi-type of objects or
prefer sparse ones, which may be irrelevant to the target task. To com-
bat with this more general but challenging learning task, we develop a
Selective Matrix Factorization based solution (SMFM4L). Particularly,
SMFM4L first collaboratively factorizes multiple inter-relational data
matrices into low-rank representation matrices of their respective objects
and optimizes their weights. To avoid the interference of sparse data, it
then approximates multiple intra-relational data by regularizing these
low-rank matrices and also optimize their weights so that both (inter
and intra) weights can automatically integrate relevant objects. Next,
SMFM4L cooperates an integration item to push the label of bags into
the instances and aggregates the label of instances to their hosting bags.
Finally, SMFM4L reconstructs the label relation of the bag or instance
using the optimized low-rank representation matrix. Experimental re-
sults on benchmark datasets show that SMFM4L achieves significantly
better results than state-of-the-art methods.

Keywords: Multi-instance learning · Multi-label learning · Multi-view
learning · Matrix Factorization.

1 Introduction

With the advancement of technology and the development of the Internet,
diverse and large amounts of data (such as images and text) are often tagged
with multiple semantic labels and represent multiple views of information that
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describe the complex object from different perspectives. For example, the paper
object in Figure 1 is connected with an author and a publishing conference,
and the paper object contains multiple instances (paragraphs and regions) on
the text view and image view. Besides, the complex multi-view multi-instance
objects (paper) associated with multiple semantic labels (i.e., AI, NLP, and
CV). Multi-view Multi-instance Multi-label Learning (M3L) is used to solve this
complex problem [1, 2]. The aim of M3L is to learn the relation among bag,
instance and label to construct bag-label or instance-label connection.

However, M3L only models the bag of homogeneous network or single typed
object, ignoring the fact that the label of a bag is derived not only from the
instance features it contains, but also from other interconnected objects [3]. As
a result, M3L cannot directly handle multi-type object setting. For the heteroge-
neous multi-instance multi-lable network scenario in Figure 1, the label of paper
is determined not only by the information it contains about the instance fea-
tures, but also by the potentially interconnected type objects. As M3L cannot be
applied to the M4 scenario directly, a possible approach can be used to address
this problem, namely by projecting other type object information onto the target
object (bag). The projection operation is often used in many applications, such
as multi-view learning [4], multi-core learning [5], etc. However, the projection
operation often destroys the intrinsic structure and attribute information of the
data itself, which can lead to new problems - i.e. information loss. Many Ma-
trix Factorization (MF) based methods are currently being applied to web data
with good results. The matrix factorization approach not only preserves network
intrinsic structure, but also makes effective use of attribute information [6, 7].
However, it accounts for objects as simple nodes and ignores instance level rep-
resentation, wihch represents more fine-grained information, thus multi-instance
objects cannot be modeled.

Recently, a new learning paradigm called Multi-type objects Multi-view Multi-
instance Multi-label Learning (M4L) is used to model heterogeneous multi-
instance multi-label networks data [3,8]. M4L can not only learn network struc-
ture information of interconnected multi-type objects, but also extract fine-
grained information. M4L-JMF [3] first performs matrix Factorization on the
heterogeneous multi-instance multi-label network, then learns the low-rank rep-
resentation of different type of objects, and reconstructs the relation among bags,
instances and lables. Synchronously, the labels of bags are distributed to the in-
cluded instances through the integration term, which then aggregates the labels
of instances to their affiliated bags. However, M4L-JMF tends to select sparser
relation matrices and give them large weight, even these sparse objects may be
irrelevant (or even harmful) for the target task.

To address these issues, we propose a M4L method (SMFM4L) based on
Selective Matrix Factorization to avoid more sparse data during the fusing pro-
cess. It first learns the low-rank representation of objects through the matrix
tri-factorization technology, and then uses optimization algorithms to avoid se-
lecting sparse data. It needs to optimize both the weight matrix between different
types of objects, and the weight matrix of the same type of objects. SMFM4L
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Fig. 1. An illustration of the Multi-typed objects Multi-view Multi-instance Multi-
label (M4) data with three types of objects (author, venue and paper). The papers are
encoded by the image and text view, and the paper objects (bags) in each view is further
made of diverse instances (i.e., image patch x11 in p1 and paragraph x21 in p2), these
objects are simultaneously tagged with multiple semantic labels (i.e., AI, NLP,DM and
CV). These inter-connected multi-type objects naturally form a Heterogeneous Multi-
Instance Network (HMIN).

then must selectively assign weights to objects, which help to identify relevant
objects and eliminate irrelevant objects in a heterogeneous multi-instance multi-
label network. At last, the bag-label/instance-label relations are reconstructed
through the optimized low-rank representation. The main contributions of this
work are summarized below:
(i) We explicitly define a Heterogeneous Multi-Instance Network (HMIN) and
naturally extend the M3L (Multi-view Multi-instance Multi-label Learning) into
the M4L (Multi-typed Objects Multi-view Multi-instance Multi-label Learning),
which is more effective and powerful than M3L (only focus on single-typed ob-
jects). This heterogeneity in HMIN includes not only multiple types of objects
and views, but also multiple types of edges, so HMIN can unify M4 and M3 data
more naturally.

(ii) We propose a novel Multi-typed Objects Multi-view Multi-instance Multi-
label Learning solution based on Selective Matrix Factorization (SMFM4L),
which can not only identify relevent objects and eliminate irrelevant data us-
ing automatically optimized weight matrices, but also credit larger weights to
the more relevant ones for the prediction of bag/intance label relation.

(iii) Empirical results on multiple real-world datasets show that our proposed
SMFM4L outperforms M3L solutions (M3Lcmf [1], M2IL [9] and ICM2L [10]),
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matrix factorization methods ( DFMF [6], WMFLDA [11] and S-NMTF [12] )
and M4L method (M4L-JMF [3]) on multiple prediction tasks.

The rest of the paper is organized as follows. Section 2 reviews the related
work and Section 3 elaborates on the details of the proposed SMFM4L. The
experimental results and analysis are presented in Section 4, and Section 5 con-
cludes the paper.

2 Related work

Our work is closely related with Multi-view Multi-instance Multi-label Learn-
ing (M3L) and data fusion based on matrix factorization (MF) methods, and
M3L is a more general or powerful framework than its degenerated version (such
as Multi-instance Multi-label Learning [13–15], Multi-view Multi-instance Learn-
ing [16,17] and Multi-view Multi-label Learning [18]).

Multi-view Multi-instance Multi-label Learning (M3L for short). These learn-
ing frameworks only consider a single type of object, and their degenerated
versions ignore some association relation among bag, instance and label. Obvi-
ously, M3L is more powerful than other degenerated versions due to the use of
the relationship between multiple views. In order to inherit the advantages of
M3L for our proposed solution, we briefly introduce some representative M3L
based methods. As far as the author knows, Multi-modal Multi-instance Multi-
label Latent Dirichlet Allocation (M3LDA) [19] is the first M3L algorithm. This
method uses Latent Dirichlet Allocation [20] to explore visual label topics and
text label topics from image view and text view, and then let these two views
predict bag label based on across view of consistent label.

In order to deal with the situation that some samples (bags) are missing
in some views, Nguyen et al. [21] further proposed a Multi-view Multi-instance
Multi-label learning method (MIMLmix) based on Hierarchical Bayesian net-
works, and derived an effective learning algorithm based on variational infer-
ence. The model assumes that in a continuous feature space, the label of the bag
obeys Gaussian distribution; while in a discrete space, the label of the bag obeys
a polynomial distribution, and these labels are distributed under different top-
ics. Different from M3LDA and MIMLmix, Li et al. [16] proposed a Multi-view
Multi-instance learning algorithm (M2IL) from the perspective of multi-view dic-
tionary learning. M2IL first uses the sparse ε-graph model to construct multiple
view information for the same sample, and uses different parameters to control
the structural information for the same sample in different views. Then, M2IL
integrates these different graphs into a unified framework, and uses sparse repre-
sentation and a new multi-view dictionary learning to classify samples (bag). In
order to learn large-scale Multi-view Multi-instance Multi-label (M3) data more
efficiently, Yang et al. [22] proposed a Multi-view Multi-instance Multi-label
learning based on Deep neural Networks (M3DN). This method performs deep
network learning for each view separately, and requires that the prediction infor-
mation of the same sample (bag) from different views is consistent. In addition,
M3DN also uses the Optimal Transport theory [23] to capture the geometric
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information of the underlying label space and guide the bag label prediction.
Xing et al. [1] proposed a Weakly Supervised Multi-view Multi-instance Multi-
label Learning (WSM3L) algorithm based on multi-view dictionary learning to
solve the situation where the correspondence between certain objects in different
views is unknown or completely unknown. M3DNS [24] explored single-modal
instance-level auto-encoders and improved bag-level based on Optimal Trans-
port, then enhance consistency among modalities and predict the labels of bag
using both instance-level and bag-level information. These M3L methods have
achieved good performance in various domains, but they can only model a single
type of object, and cannot be directly applied to the interconnected objects of
multi-typed in real world.

Some data fusion methods based on matrix factorization can not only han-
dle interconnected multi-type of objects, but also preserve the intrinsic structure
among multi-type of objects. These approaches have been widely used in many
fields [6,7,25]. To name a few, Symmetric Nonnegative Matrix Tri-Factorization
(S-NMTF) [12] is based on matrix factorization by clustering multiple types at
the same time. Since SNMTF performs matrix factorization on a large matrix,
this fast matrix contains the internal relationships of objects and external re-
lations, thus leading to a serious computational burden. Data Fusion Matrix
Factorization (DFMF) [6] synergistically decomposes these fast matrices into
low-rank matrices, and then reconstructs the target relationship matrix from
them, so as to carry out the direct relationship between the target objects.
Weighted Matrix Factorization on multi-relational data for LncRNA-Disease
Association prediction (WMFLDA) [11] further considers the weights between
different types of objects and selectively fuses relational data. However, although
these schemes consider the network structure or multiple feature views between
different types of objects, due to the lack of instanc-level information model-
ing capabilities, they cannot model multiple instances in complex objects and
aggregate the instance feature onto the bag level. Multi-typed Objects Multi-
View Multi-Instance Multi-Label Learning based on Joint Matrix Factorization
(M4L-JMF) [3] combines multi-type object data with instance features (The
M3L learning framework is extended for the first time to handle multi-type
objects scenarios), and then M4L-JMF performs matrix factorization of these
inter-association and intra-association data among different types of objects,
then reconstructs label of bag or instance association relation based on low-rank
matrix. However, because it cannot automatically identify sparse data, and as-
signs larger weights to sparse data, some noisy data cannot be eliminated well,
causing a performance bottleneck.

In order to comprehensively capture the fine-grained multi-instance informa-
tion and fuse network structure information in the Multi-type Multi-view Multi-
instance Multi-label data (M4 data) or Heterogeneous Multi-Instance Network
(HMIN), and filter out related objects and eliminate irrelevant objects, we intro-
duce a method based on Selection Matrix Factorization called SMFM4L to model
interconnection complex multi-type objects. The next section will introduce this
method in detail.
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Table 1. The used main notations

Notation Explanation

Rij Inter-relational matrices of different types of objects

Θ
(t)
i Intra-association matrices of the i-th typed objects with the t-th view

Rbi Bag-Instance relational matrix
Rbl Bag-Label relational matrix
Ril Instance-Label relational matrix
Gi Low-rank representation of objects of the i-th type
Sij The latent inter-relations between objects of the i-th type and the j-th type
R The set of inter-relational matrices Rij

Θ A set of all the intra-relational matrices Θ
(t)
i

G A Heterogeneous Multi-instance Network (HMIN)
Wr

ij Weight of the inter-relational matrix of the i-th and i-th typed objects

Wh
pt Weight of the t-th intra-relational matrix of the p-th object type

α Regularization weight for Wr
ij

β Regularization weight of Wh
pt

3 Method

3.1 Problem Statement

A Heterogeneous Multi-instance Network (HMIN) G = {V,R,Θ} is a spe-
cial Heterogeneous Information Network (HIN), where V contains multi-typed
objects, R and Θ contain inter-association relation among multi-type of objects
and intra-association relation between same type of objects (also as multi-view
information), respectively. The difference of HMIN and HIN lies in two aspects:
The first is in the prediction task, HMIN focuses on bag/instance-label predic-
tion, while HIN focuses on the node-level tasks (such as node classification and
recommendation [26]) or network level tasks (such as clustering and community
discovery [27]). The second is that HMIN must include the complex objects (bags)
which are composed of multiple instances, while HIN does not. Suppose there are
m types of objects that are directly or indirectly related to each other, and they
are coded into the relation of different types of objects matrix Rij ∈ Rni×nj ,

the same type objects relation matrix Θ
(t)
i ∈ Rni×ni . The relation data matrix

Rij means that the inter-relation between ni objects of the i-th type and nj

objects of the j-th type, and the relation data matrix Θ
(t)
i encodes the intra-

relation for the i-th type. The goal of SMFM4L is to learn the mapping function
f(V,R,Θ) ∈ {0, 1}q to label the target object with respect to q different but
related labels. Then we can get the bag-label relation matrix Rbl for Nb objects
and Nl labels or instance-label relation matrix Ril for Ni objects and Nl tags.
Here R stores the entire inter-relational data matrices Rij , while Θ holds the
intra-relational matrix Θi.

To achieve the goal of predicting the correlation label of bags or instances,
we first pre-set the weights of the intra-association and inter-association relation



Title Suppressed Due to Excessive Length 7

matrices, and then synergistically decomposes the intra-association and inter-
association relation matrices in R and Θ to obtain the low-rank representation
of these types of objects. Then, collaborative optimization is carried out on
the weight matrices and these low-rank matrices. After that, We fuse the multi-
type object information through these object latent representation matrices, and
reconstruct the association matrix Rbl (or Ril) between bags (or isntances) and
labels from the obtained low-rank matrix representation.

3.2 Selected Matrix Factorization

Fusing other types of object information can improve the representation abil-
ity of bags or instances, and achieve the purpose of further improving the pre-
diction of bag-label (or instance-label) relations. Other types of objects can be
used to project toward the target type (bag) to form a composite bag-bag or
instance-instance relational data matrices, and then known label information
can be used to predict label information of unknown bags or instances. Al-
though these projection methods can integrate information of interconnected
objects (such as multiple kernel learning, classifier ensemble based data fusion
solutions) [5, 28]. However, projection operation may overrides or even distorts
the intrinsic structure information of multi-type objects, resulting in information
loss and compromise the performance [29,30].

These relational data types can be further divided into inter-relational ma-
trix and intra-relational matrix. To fuse these multi-type object relations, Data
Fusion technology based on Matrix Factorization (DFMF) has been proposed
to solve this problem without destroying the intrinsic structure of multi-relation
data [6]. The basic framework can be formalized as follows:

min
G≥0

Ω(G,S) =
∑

Rij∈R

‖Rij −GiSijG
T
j ‖2F

+

m∑
k=1

τ∑
t=1

tr(GTΘ
(t)
i G)

(1)

where Rij is inter relations between ni objects of type i and nj objects of type
j, and G = diag(G1,G2, · · · ,Gm), Gi ∈ Rni×ki is the low-rank representation
of objects of the i-th type. S is made of Sij ∈ Rki×kj , which encodes the latent
relationship between Gi and Gj , and ki�ni, kj�nj are the low-rank size of the
respective object type. Θ(t) collectively contains all the following block diagonal

matrices: Θ(t) = diag(Θ
(t)
1 ,Θ

(t)
2 , · · · ,Θ(t)

m ) (t ∈ {1, 2, · · · ,maxiti}), where the i-
th block matrix along the main diagonal of Θ(t) is zero if t > ti, and τ = maxiti,
tr(·) is the matrix trace operator, ‖ · ‖2F is the Frobenius norm of a matrix.

Without loss of generality, the above function aims to reconstruct the incom-
plete Rbl (or Ril) to replenish the relation among bags, instances and labels.
Entries in intra-association data matrices within an association are negative for
similar objects and positive for dissimilar objects. The negative entry is treated
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as a must-link constraint, which forces object pairs to be close together in the
presentation space; The positive entries entries can be seen as a cannot-link con-
straint [31, 32], it forces the different objects in low rank representation space
away from each other.

However, Equation (1) not only ignores the important bag-instance asso-
ciation, but also fails to distinguish the dependencies of multi-typed objects.
A real-world object (bag) may further be composed of several distinct sub-
objects (instances), and the label of the bag is determined by the label of its
instances [13,33]. In many practical fields (i.e., medical image analysis and biol-
ogy), instance-level precise labels are more important and interesting than bag-
level labels, which carry more specific knowledge about the regions (i.e. local
patches and functional sites) of bag (i.e. images and molecules) [34]. Unfortu-
nately, the labels of the instances are often unknown, while the labels of the bags
can be collected easily [35].

Based on above analysis, to leverage the bag-instance association between
two types of objects, we define the objective function of SMFM4L as follows:

min
G≥0

Ω(G,S) =

m∑
i,j=1

‖Rij −GiSijG
T
j ‖2F + ‖Rbl −RbiGiSilG

T
l ‖

2

F

+

m∑
k=1

τ∑
t=1

tr(GTΘ
(t)
i G)

(2)

where a dispatch and aggregation term (‖Rbl −RbiGiSilG
T
l ‖

2

F ) has been in-
troduced to push the labels of bags into their affiliated instances and reverse
aggregate the labels of instances into their hosting bags in Equation (2), and
GiSilG

T
l integrates the labels of instances towards their hosting bags. In this

way, Equation (2) can not only fuse multiple types of objects, but also con-
sider complex objects composed of multiple sub-objects (instances) to predict
the labels of bags and instances in a consistent manner.

Equation (2) can not only respect the intrinsic structure of multi-type ob-
jects, but also model the fine-grained information for bag-instance association.
Because this function does not project these multi-type object association infor-
mation onto the same space for fusion, and introduce a dispatch and aggregation
term to predict the labels of bags and instances in a coherent way. However, it
equally treats inter-association relation and intra-association relation and ignores
the related relevance of them to the target task. As a result, its performance may
be degraded due to noisy or irrelevant data. To solve this problem, Fu et al. [25]
extended DFMF by optimizing the weight matrix of different types of objects.
However, it still could not avoid the noise interference in the intra-association
relation data during the fusion phase. Yang et al. [3] further extended DFMF by
considering special weights for intra-association relation data and by considering
important bag-instance correlations into M4L task. The theoretical analysis and
experimental results of the two extended methods demonstrate that selective
fusion of different intra- and inter-association correlations can further improve
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the representation of objects during fusion of complex objects. However, they
prefer to select sparse objects, which own relation matrix with more zero ele-

ment, and sparse data usually have a smaller smoothing loss (tr(GTΘ
(t)
i G)) or

approximation loss (‖Rij −GiSijG
T
j ‖2F ). In practice, a very sparse data matrix

usually does not encode sufficient information for the target task, so sparse data
may be irrelevant to the target task.

3.3 Unified Objective Function

Multiple inter-(intra-) relational data matrices contain complementary infor-
mation for different types of objects, but they may also contain some noisy or
irrelevant data matrices [3, 36]. Although the low-rank matrix factorization can
reduce the inner noises of individual data matrices to some extent [37, 38], it
is still necessary to selectively integration and fusion of different relevance rela-
tion between data matrix. Specifically, We support adaptive weights for the set
of inter (intra)-relational data matrices, which explicitly remove the noisy data
matrices. In addition, in order to reduce the preference for sparse data or the
influence of noisy data, we define the objective function of SMFM4L as follows:

min
G≥0

Ω(G,S,W r,W h) =

m∑
i,j=1

W r
ij‖Rij −GiSijG

T
j ‖

2

F
+ ‖Rbl −RbiGiSilG

T
l ‖

2

F

+

m∑
p=1

τ∑
t=1

W h
pt‖Rt

pp −GpSppG
T
p ‖

2

F
+ α‖vec(W r)‖2F + β‖vec(W h)‖2F

s.t.W r≥0,W h≥0,
∑

vec(W r
i ) = 1,

∑
vec(W h

i ) = 1

(3)

where τ = maxiti, Sij ∈ Rki×kj , Wr ∈ Rm×m and Wh ∈ Rm×τ are the
weight matrices assigned to different inter-relational data matrices and different
intra-relational data matrices, respectively. If Rij /∈ R, W r

ij = 0. Wh
pt is the

weight of the t-th intra-relational matrix of the p-th object type. If Rt
pp /∈ R or

t > ti, W
r
pt = 0. Unlike Equation (2), our objective function not only selectively

integrates inter-relation and intra-relation data matrices using weight matrices,
but also approximates Rt

pp to fuse it by using shared low-rank matrices Gp and
Spp in the process of crossing ti intra-relation data. In this way, a data matrix
inconsistent with other data matrices of the same objects will be assigned with
a lower weight. So, data matrices that are inconsistent with other data matrices
within the same object’s intra-relational matrices will be given lower weights.

Especially for dense data matrices Rt
pp, ‖Rt

pp −GpSppG
T
p ‖

2

F
has a larger loss

because Rt
pp encodes intra-relation more than its cousin matrix ({Rt

pp}
tp
t , tp 6= t)

is much less and the losses are mainly occupied by tr(GTΘ
(t)
i G). In the same

way, for sparse matrices with noisy elements, ‖Rt
pp −GpSppG

T
p ‖

2

F
leads to a

large loss. vec(Wr
i ) and vec(Wh

i ) are the vectorisation operator that stacks the
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i-th row of Wr and Wh, α and β are the regularization weights for these two
weight matrices, they are used to control the complexity of vec(W) and vec(Wh).
Therefore, SMFM4L can not only selectively fuse and integrate several related
data matrices, but also automatically remove unrelated data matrices using these
two regularization items.

To minimize the above objective function, smaller inter association weight
and intra association weight are automatically assigned to different types of
objects and same types of objects, respectively. For the first term in objective
function, due to Gi is also shared by an interconnected objects, sparse selection
of this term can also be avoided. Therefore, Equation (3) avoids the prefer-
ence for sparse association relation. Overall, Equation (3) can not only explore
the contribution of different intra-relational data matrices and inter-relational
matrices by assigning weights to them, but also avoid favoring sparse objects.
We would like to point out that this objective function provides a more gen-
eral and comprehensive framework for effectively modeling complex objects and
effectively avoiding interference from sparse or noisy data.

The objective function of our SMFM4L is non-convex in G, S, Wr and
Wh altogether. We can use the idea of auxiliary functions which is frequently
used in the convergence proof of approximate matrix factorization algorithms
to optimize G and S in (3) [39, 40], and the idea of convex optimization and
Karush-Kuhn-Tucker (KKT) multipliers [41] to optimize Wr and Wh. Due to
the page limit, the optimization process and convergence proof are ignored.

Table 2. Statistics of datasets used for the experiments. avgBL is the average number
of labels per bag and avgBI is the average number of instances per bag.

Dataset Bags Instances Labels AvgBL AvgBI View Node Type Link Type

Letter Frost 144 565 26 3.6 3.9 1
Letter Carroll 166 717 26 3.9 4.3 1

MSRC v2 591 1,758 23 2.5 1.0 1
Birds 548 10,232 13 2.1 18.7 1

Isoform 795 6,457 704 6.7 5.2 2 5 5

4 Empirical Evaluation

4.1 Experimental Setup

To study the performance of our proposed algorithm, we designed three ex-
periments to test the performance of SMFM4L. In the first experiment, we used
real-world M4 data (Isoform dataset) [3] to study the performance of SMFM4L
and compare it with data fusion methods, M4L and its degenerated versions.
In the second experiment, we compared SMFM4L against M4L and its degener-
ated versions (Multi-view Multi-lable learning, Multi-view Multi-instance learn-
ing and Multi-instance Multi-label learning) on benchmark multi-instance multi-
label datasets [1,42–44]. We have listed the statistics for these datasets in Table
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Table 3. Results on Isoform dataset of M4L, M3L-based methods and matrix factor-
ization (MF)-based methods by 5-fold cross validation. •/◦ indicates whether SMFM4L
is statistically (according to pairwise t-test at 95% significance level) superior/inferior
to the other method.

Method AvgF1 AUROC AUPRC

M3L
M3Lcmf 0.152±0.004• 0.663±0.018• 0.154±0.013•
ICM2L 0.074±0.001• 0.533±0.001• 0.041±0.022•
M2IL 0.025±0.004• 0.544±0.009• 0.032±0.013•

MF
DFMF 0.051±0.001• 0.943±0.009• 0.637±0.054•
S-NMTF 0.021±0.001• 0.790±0.012• 0.015±0.002•
WMFLDA 0.032±0.001• 0.949±0.004• 0.612±0.007•

M4L M4L-JMF 0.055±0.002• 0.967±0.004• 0.674±0.026•
SMFM4L 0.256±0.001 0.981±0.002 0.713±0.012

(2). In particular, we compare the performance of SMFM4L against some related
methods, including M3L solutions (M3Lcmf [1], ICM2L [45] and M2IL [9]), data
fusion solutions based on matrix factorization (S-NMTF [12], DFMF [6] and
WMFLDA [36]), M4L solution (M4L-JMF [3]). Input parameters of the com-
parative method are based on the authors specified in the code or the advice
of the paper (or optimized). We will explore the sensitivity of these parameters
later. For each comparison method, we performed a five-fold cross-validation in
ten independent experiments and reported the average results. All experiments
are performed on a server configured with CentOS 7.3, 256GB RAM and Intel
Exon E5-2678 v3.

To effectively evaluate the performance of SMFM4L, three frequently used
evaluation metrics (AUPRC, AUROC and AvgF1 ) in multi-label learning and
bioinformatics are adopted to quantify the overall performance: The average
area under the precision-recall curve (AUPRC ), which calculates the value of
the area under the Precision-Recall (PR) curve for each label and then takes the
average values for all labels; The average area under the receiver operating curve
(AUROC ), which computes the area under the ROC curve for each label, and
then takes the average for all labels; and the average F1-score (AvgF1 ) across
all classes by computing the harmonic precision value and recall value for each
label, and then takes the average of all labels, the formal definitions of these
metrics are omitted due to the page limit, and can be found in [46]. The larger
values are an indication of a better performance for all metrics.

4.2 Results on M4 data

To effectively evaluate the performance of SMFM4L, we applied the SMFM4L
algorithm to predict the association between isoforms and GO (Gene Ontology)
terms (as the labels of isoform objects) on the Isoform dataset [3]. Since M3L
methods cannot handle M4 data directly, we first project other types of objects
to Gene to form M3 data, and then use these M3L methods to target task. As
for other data fusion based on matrix factorization methods, we use this classical
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setup [3], we ignore this particular bag-instance relation, and then use the multi-
type object information to predict the association between labels and genes. We
use the top K labels corresponding to the largest entry in each row of Rbl (Ril)
as the relevant labels for the bag (or instance ), here K denotes the average
number of labels per bag or instance.

In Table 3 we report the results of the first experiment. From Table 3, we
have three important and interesting observations: The first is that feature repre-
sentation of bags or instances can be significantly improved by fusing multi-type
object information. Since M3L methods cannot process M4 data directly, they
can only process M3 data formed after projection. The results in Table 3 show
that the M4L methods are more powerful than the M3L methods in terms of
performance as shown by the AUROC and AUPRC values in Table 3. This is
because the projection operation causes information loss and therefore hurts the
modeling capability of M3L. It is further shown that our proposed SMFM4L
method can naturally handle multi-type objects, while the M3L method only
considers a single type of object and is not directly adaptable to multi-type
object setting;

The second observation is that bag-instance association information is impor-
tant in M4L learning tasks, and selective fusion of data can improve performance.
This finding comes from comparing the matrix factorization based method with
M4L solution, which has higher AUROC and AUPRC values, because M4L-
JMF or SMFM4L account for finer-grained multi-instance information. Overall,
this comparison confirms the importance of bag-instance association in the M4L
learning task, and selective fusion of multi-type object information can improve
classifier performance;

The final interesting observation is that avoiding sparse data preferences can
better fuse multiple types of objects. This observation comes from the compar-
ison between M4L-JMF and SMFM4L, where SMFM4L performs significantly
better than M4L-JMF although M4L-JMF also accounts for the relation be-
tween different types of objects. This is because the M4L-JMF method uses the
manifold regularization and approximate losses to determine the relevance of
these objects. Therefore, the M4L-JMF method prefers sparse data and gives
them greater weights in the fusion process. However, these sparse data are irrel-
evant to the target task, so the performance of M4L-JMF is lower than that of
SMFM4L, especially in AvgF1 value. In contrast, SMFM4L does not have this
preference, so SMFM4L gives the best results among all the compared methods.

In conclusion, the experimental results on real-world M4 datasets suggest
that SMFM4L can not only adequately model M4 data without destroying the
intrinsic structure between multiple types of objects and ignoring bag-instance
association relation, but also avoid the interference of sparse data. It is due to
these advantages that it beats all comparison methods and obtains the best
results.
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Table 4. Results on four datasets with bag-level labels of compared methods by 5-fold
cross validation. •/◦ indicates whether SMFM4L is statistically (according to pairwise
t-test at 95% significance level) superior/inferior to the other method.

Metric ICM2L M3Lcmf S-NMTF DFMF WMFLDA M4L-JMF SMFM4L

Birds
AvgF1 0.372±0.009• 0.485±0.012◦ 0.208±0.064• 0.252±0.012• 0.256±0.011• 0.268±0.014• 0.395±0.011

AUROC 0.720±0.008• 0.604±0.032• 0.738±0.027• 0.902±0.009• 0.911±0.006• 0.944±0.002• 0.955±0.003
AUPRC 0.255±0.019• 0.425±0.012• 0.101±0.025• 0.886±0.045• 0.897±0.009• 0.963±0.008 0.984±0.005

Letter Carroll
AvgF1 0.317±0.001• 0.543±0.044◦ 0.095±0.011• 0.247±0.014• 0.269±0.012• 0.288±0.014• 0.483±0.0107

AUROC 0.589±0.006• 0.649±0.022• 0.705±0.003• 0.906±0.008• 0.916±0.003• 0.924±0.002• 0.951±0.003
AUPRC 0.101±0.002• 0.421±0.012• 0.084±0.016• 0.909±0.056• 0.916±0.013• 0.948±0.008• 0.971±0.006

Letter Frost
AvgF1 0.252±0.001• 0.538±0.050◦ 0.077±0.017• 0.242±0.018• 0.248±0.031• 0.250±0.009• 0.392±0.006

AUROC 0.638±0.010• 0.665±0.002• 0.645±0.033• 0.907±0.003• 0.912±0.003• 0.924±0.002• 0.951±0.003
AUPRC 0.211±0.024• 0.495±0.083• 0.128±0.007• 0.894±0.049• 0.912±0.025• 0.951±0.008• 0.973±0.012

MSRC v2
AvgF1 0.219±0.003• 0.426±0.028 0.054±0.022• 0.198±0.008• 0.211±0.007• 0.215±0.004• 0.412±0.006

AUROC 0.668±0.063• 0.698±0.018• 0.695±0.041• 0.937±0.002• 0.941±0.003• 0.958±0.001• 0.972±0.004
AUPRC 0.253±0.026• 0.444±0.083• 0.106±0.046• 0.880±0.021• 0.917±0.009• 0.933±0.003• 0.958±0.007

4.3 Results on M3 data

We further investigate the performance of SMFM4L on four benchmark
canonical single-view multi-instance multi-label datasets . For the experiments
of four datasets in Table 2, we randomly split the data view into two views,
each containing half the features of the original views. Other pre-treatment are
the same as those in the previous subsection. Table 4 reported the experimental
results of four multi-instance multi-label datasets (listed in Table 2).

The experimental results in Table 4 demonstrate that our proposed SMFM4L
works better than the other comparison methods and has relatively high AUPRC
and AUROC values. Compared to the second-best baseline, the AUPRC and
AUROC values are at least 2% and 1% higher, respectively. The increase in
AUPRC values is even more significant, this observation implies that those four
multiple-instance multi-label datasets are class imbalanced datasets. Thus, in
terms of overall performance, our proposed method performs better.

5 Conclusion

In this paper, we introduced a Multi-typed objects Multi-view Multi-instance
Multi-label Learning solution based on Selective Matrix Factorization (SMFM4L)
for naturally interlinked multiple type of objects. Unlike existing M4L based on
matrix factorization approaches or degraded versions, SMFM4L is more power-
ful and effective than them due to it can not only selectively integrate multi-
relational matrix, but also avoid preferring to sparse association data. Exper-
imental results on real-word and benchmark datasets validated that SMFM4L



14 Y.L Yang et al.

can more comprehensively fuse multiple type of objects by selective matrix fac-
torization and mine the complex relation among bags, instances and labels, and
achieves a much better performance than the state-of-the-art methods in pre-
dicting bag/instance label relation.

For future works, we plan to consider more network structure and semantic
information such as graph structure information in heterogeneous multi-instance
biological networks for cooperative driver pathway discovery, and study the im-
pact of different semantic information on prediction tasks (bag and instance
level).

References

1. Yuying Xing, Guoxian Yu, Carlotta Domeniconi, Jun Wang, Zili Zhang, and Maozu
Guo. Multi-view multi-instance multi-label learning based on collaborative matrix
factorization. In AAAI Conference on Artificial Intelligence, pages 5508–5515,
2019.

2. Cam-Tu Nguyen, Xiaoliang Wang, Jing Liu, and Zhi-Hua Zhou. Labeling compli-
cated objects: Multi-view multi-instance multi-label learning. In AAAI Conference
on Artificial Intelligence, pages 2013–2019, 2014.

3. Yuanlin Yang, Guoxian Yu, Jun Wang, Carlotta Domeniconi, and Xiangliang
Zhang. Multi-type objects multi-view multi-instance multi-label learning. IEEE
International Conference on Data Mining (ICDM), pages 1370–1375, 2020.

4. Jing Zhao, Xijiong Xie, Xin Xu, and Shiliang Sun. Multi-view learning overview:
Recent progress and new challenges. Information Fusion, 38:43–54, 2017.

5. Mehmet Gönen and Ethem Alpaydın. Multiple kernel learning algorithms. JMLR,
12:2211–2268, 2011.
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