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Abstract. As the micro-video apps become popular, the numbers of
micro-videos and users increase rapidly, which highlights the importance
of micro-video recommendation. Although the micro-video recommen-
dation can be naturally treated as the sequential recommendation, the
previous sequential recommendation models do not fully consider the
characteristics of micro-video apps, and in their inductive biases, the
role of positions is not in accord with the reality in the micro-video
scenario. Therefore, in the paper, we present a model named PDMRec
(Position Decoupled Micro-video Recommendation). PDMRec applies
separate self-attention modules to model micro-video information and
the positional information and then aggregate them together, avoid the
noisy correlations between micro-video semantics and positional informa-
tion being encoded into the sequence embeddings. Moreover, PDMRec
proposes contrastive learning strategies which closely match with the
characteristics of the micro-video scenario, thus reducing the interfer-
ence from micro-video positions in sequences. We conduct the extensive
experiments on two real-world datasets. The experimental results shows
that PDMRec outperforms existing multiple state-of-the-art models and
achieves significant performance improvements.

Keywords: Recommender Systems · Micro-video Recommendation ·
Contrastive Learning.

1 Introduction

Micro-video streaming platforms are a kind of newly-emerging applications to
provide entertainment services, where users can not only produce micro-videos
and upload them to the platforms but also watch micro-videos in their spare time
or fragmentary time by the apps on their smart phones. With micro-video apps,
such as TikTok, Kwai, etc., increasingly popular, the numbers of micro-videos
and users show a rapid growing trend.

In general, a micro-video app displays a single video in full-screen mode at
a time and automatically plays it in a repetitive way. A user slides his finger on
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the screen to bring the next micro-video which is what the app recommends.
If the micro-videos exposed to a user do not fall within the scope of his/her
interests, then the user might give up watching and leave the app. Therefore, the
recommendation, whose results will greatly affect the user experiences, becomes
the key part in a micro-video streaming platform.

We note that micro-videos are large in quantity and short in time, usually in
tens of seconds. Most of micro-videos are lack of the side information (such as
genre, director, actors). By a micro-video app, a user can interact with a micro-
video in several different ways, such as playing or replaying a micro-video, sharing
or liking a micro-video, etc. These interactions can be divided into explicit feed-
back (e.g. share or like) and implicit feedback (e.g. play or replay), where the
former is few in number and the latter is large. In particular, while examining
how the interaction sequences are generated, two phenomena need to be taken
notice of. Firstly, the playing order of micro-videos is designated by the platform,
instead of a result that a user proactively chooses. If the platform recommends
another micro-video sequence, then a user has to browse or watch the micro-
videos in that sequence in turn, leaving the totally different watching records.
Secondly, the behaviors that a user browses micro-videos are driven by his/her
interests, usually having no specific purposes, in comparison with the shopping
in e-commerce scenarios. As a result, adjacent micro-videos in an interaction
sequence have no strong inherent connections.

Existing micro-video recommendation models [1–5] exploit multi-modal in-
formation including visual, acoustic, and textual features for recommending
micro-videos. However, the multi-modal information of a micro-video is not al-
ways available, which renders these models impossible to effectively work. Even
if having multi-modal information of each micro-video, we hold the view that
these models are more appropriate for the micro-video ranking rather than the
matching, where the matching and ranking are two standard successive phases
in large-scale recommender systems. The reason behind our view is that the ac-
quisition of multi-modal features requires a large amount of calculation. During
the matching, the millions or even billions of micro-videos need to be processed,
thus it is not practicable to recall micro-videos using these models in terms of
time cost. Alternatively, sequential recommendation models [6–9, 11, 13, 14] can
be used for recalling micro-videos. However, so far, the characteristics inher-
ent in interactions between a user and micro-videos have not been taken fully
advantage of. Moreover, in most existing models [6, 9, 11], items in a user-item
interaction sequence are believed to have unidirectional associations, that is, an
item is dependent on one or more previous items in an interaction. Unfortu-
nately, such an inductive bias is not matched exactly with what happens in the
micro-video scenario.

In this paper, we propose a recommendation model named PDMRec (Position
Decoupled Micro-video Recommendation) to recall micro-videos. We improve
micro-video recommendations from two aspects. Firstly, we enhance the repre-
sentation of the sequence embeddings by postponing the fusion of micro-video
embedding and positional embedding so as to capture the nature of the order
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between micro-videos. Secondly, we argue that in the micro-video scenario, an
original interaction sequence and its reordered sequence are semantically equiv-
alent in the space of user interests, and further two reordered sequences from a
same sequence are semantically equivalent. Thus, we can adopt the contrastive
learning to reduce the interference from micro-video positions.

To summarize, the main contributions are as follows.

• We take a divide-and-merge policy to generate sequence embeddings, i.e.,
employ different multi-head attention to model micro-videos and their po-
sitional information in the sequences, respectively and then aggregate them
into sequence embeddings, which can reflect the actual role of micro-video
positions.

• We construct semantically equivalent sequences by reordering operations for
a given interaction sequence and present the reordering sequence loss for two
newly-generated sequences, which can eliminate the implicit bias that the
positional information brings out.

• We conduct extensive experiments on two real-world datasets. The experi-
mental results show PDMRec outperforms the other six models, i.e., GRU4Rec,
STAMP, SASRec, BERT4Rec, CL4SRec and DuoRec, in terms of Recall and
NDCG.

The rest of the paper is organized as follows. Section 2 introduces the related
work. Section 3 describes the PDMRec model in detail. Section 4 gives the
experimental evaluation. Finally, the paper is concluded in Section 5.

2 Related Work

Our work is related to the research under three non-orthogonal topics: micro-
video recommendation, sequential recommendation and contrastive learning.

Micro-video Recommendation. Micro-video recommendation has attracted
much attention of many researchers [1–5]. For example, Chen et al .[1] character-
izes both short-term and long-term correlations implied in user behaviors, and
profiles user interests at both coarse and fine granularities. Li et al .[2] present a
temporal graph-based LSTM model to route micro-videos. Wei et al. [3] design
a Multi-Modal Graph Convolution Network (MMGCN) which can yield modal-
specific representations of users and micro-videos. Liu et al .[4] propose the
User-Video Co-Attention Network (UVCAN) which learns multi-modal infor-
mation from both users and micro-videos using an attention mechanism. Jiang
et al. [5] propose a multi-scale time-aware user interest modeling framework,
which learns user interests from fine-grained interest groups. These models, as
we point out, utilize the multi-modal information of micro-videos but ignore the
characteristics of interactions in micro-video apps.
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Sequential Recommendation. Sequential recommendation is to model user
interaction sequences to predict the next item the user will interact with, where
an item can be a micro-video. A natural idea of modeling sequences is to employ
RNNs. For example, GRU4Rec[6] and its improved version [7] adopt multiple
GRUs to predict the next item the user is most likely to interact with. Sub-
sequently, various Graph Neural Networks (GNNs), such as SR-GNN [8], are
applied to the sequential recommendation. However, comparing to the goods in
e-commerce scenarios, micro-videos are akin to disposable products and might
be forgotten by users quickly, which mismatches with the advantages of GNNs.
The alternative way to achieve the sequential recommendation is to design at-
tention mechanisms. For example, STAMP [9] provides an attention network to
calculate the coefficient for each item in a sequence, and then generate general
user interest and current user interest. Kang et al. apply Transformer [10] in NLP
to the sequential recommendation and present SASRec [11]. SASRec adopts a
self-attention mechanism to calculate the coefficients of items and presents po-
sitional embeddings to indicate the positions of items. Along with the advent
of BERT [12], Sun et al. present BERT4Rec [13], which trains the bidirectional
model to model sequential data using the cloze task. Fan et al. [14] improve
the self-attention module, which scales linearly w.r.t. the user’s historical se-
quence length in terms of time and space, and make the model more resilient to
over-parameterization.

Contrastive Learning. More recently, contrastive learning has attracted a
great deal of attention. It augments data to discover the implicit supervision
signals in the input data and maximize the agreement between differently aug-
mented views of the same data in a certain latent space. After the contrastive
learning achieves first success in computer vision, it has been introduced to rec-
ommender systems [15, 17, 18, 16, 19]. For example, CL4SRec [15] proposes three
methods to generate new sequences form raw data, and then utilize them to im-
prove the base model. DuoRec [16] utilizes contrastive learning to resolve the rep-
resentation degeneration, improving the recommendation accuracy. Moreover,
the contrastive learning also has been applied to reduce bias [17] and decrease
noise [19], and alleviate the cold start problem [18].

Compared to existing work, our model is tightly bound to the micro-video
scenario. It generates embeddings of sequences in which positional information
among micro-videos are encoded separately. It utilizes the scenario characteristic
i.e., position independence to augment interaction sequences and narrow their
semantic gap.

3 Our Model

3.1 Overview

For a micro-video scenario, let U and V denote a user set and a micro-video
set, respectively. For a user u ∈ U , his/her positive interactions refer to the
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Fig. 1. Architecture of PDMRec.

explicit/implicit feedback that meets some constraint conditions. The examples
of positive interactions are given in Section 4.1. We choose positive interactions
from his/her watching records and order them by the interaction time, thus form
a positive interaction sequence, denoted by su = [v1, v2, ..., v|su|].

Our goal is to predict the next micro-video that the user u is most likely to
be satisfied with, given the positive interaction sequence su of the user u, where
the criterion of user satisfaction is that his/her interaction with the micro-video
belongs to a positive interaction.

Our model PDMRec exploits positive interaction sequences of users for re-
calling micro-videos, putting aside multi-modal information of micro-videos. For
convenience of processing, we reconstruct each positive interaction sequence to
be a sequence with fixed length L. Specifically, if a sequence has the length
greater than or equal to L, then we choose latest L interactions, otherwise we
pad 0 from the end of sequence to the length L. Hereinafter, we also denote this
fixed-length sequence as su.

Given the set S of fixed-length interaction sequences of users in U , PDM-
Rec learns a d-dimensional real-valued embedding ei for each of the item i in
V and generates the sequence embedding matrix S ∈ Rd×|S| by the sequence
encoder, and enhances item embeddings by the contrastive encoder. Then in the
prediction layer, PDMRec generates ŷ = {ŷ1, ŷ2, ..., ŷ|V|} for each user, where ŷi
denotes the score for the item vi in V. Finally, PDMRec is trained as a classifier,
taking the micro-videos with top-k scores as recommendations for each user. Fig.
1 gives the architecture of the model.
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3.2 Sequence Encoder

For generating sequence embeddings, the existing self-attention based recom-
mendation models [11, 13] adopt the method similar to that in Transformer
[10] to gather the information of items in a sequence and positional informa-
tion among these items. However, we find that these models take the addition of
item embeddings and positional embeddings as the input of self-attention, which
leads to same projection matrices to be applied to different relationships, i.e.,
item-item and position-position relationship, and will bring the mixed and noisy
correlations. This defect is inherited from Transformer [20]. We think it should
be avoided in the scenarios of applying Transformer.

In the sequence encoder, we introduce two slightly different attention mod-
ules, i.e., a basic sequence encoder and a positional encoder, to generate the
basic sequence embedding and the positional embedding, respectively.

In a basic sequence encoder, we use a fixed-length sequence [v1, v2, ..., vL]
as the input of item embedding layer and obtain an item embedding matrix
E = [e1, e2, ..., eL],E ∈ Rd×L, where d is the dimension of item embeddings.

To capture the semantic dependence information among micro-videos in the
sequence, we borrow a typical multi-head self-attention from Transformer and
apply it with a different way from existing self-attention based recommendation
models [11, 12].

For the basic sequence embedding, we adopt the following multi-head atten-
tion module.

Sv
h = softmax

(
ETWQh

(
ETWKh

)T√
d/hd

)
ETWV h (1)

Sv = concat(Sv
1, ...,S

v
h) (2)

where h ∈ [1, hd], hd is the number of attention heads, WQh, WKh, WV h ∈
Rd×dh are learnable parameters, and dh = d/hd.

Further, in the positional encoder, we introduce another self-attention mod-
ule to exclusively handle positional embeddings for extracting the relationship
among the positions of micro-videos.

We take the position sequence as input of the position embedding layer and
obtain the positional embedding matrix P ∈ Rd×L, and then perform the fol-
lowing calculation.

Sp
h = softmax

(
PTWp

Qh

(
PTWp

Kh

)T√
d/hd

)
ETWV h (3)

Sp = concat(Sp
1, ...,S

p
h) (4)

where h ∈ [1, hd], hd is the number of attention heads, Wp
Qh, W

p
Kh ∈ Rd×dh

are learnable parameters, and dh = d/hd. Note that the number of head in the
positional encoder is set to the same as the one in the sequence encoder. Sp is
the resulting positional embeddings.
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Having Sv and Sp in hand, we perform the following aggregation strategy.

S = LayerNorm(dropout(MLP(Sv + Sp)) +E)) (5)

As shown in Eq. 5, we apply MLP, dropout, skip connection and layer normal-
ization to aggregate Sv and Sp, thus obtaining the sequence embedding matrix
S.

The basic sequence encoder, the positional encoder and the aggregator com-
pose a context-aware block (CAB).

In the sequence encoder, we stack N context-aware blocks (CABs). Let S1

be the output of the first CAB (i.e., CAB(1)), the output of n-th CAB i.e.,
CAB(n) will be Sn = CAB(n)(S(n−1),P), where n ∈ {1, 2, . . . , N} and S0 = E.
SN can be regarded as a set of L hidden vectors, that is, SN = [hN

1 ,h
N
2 , ...,h

N
L ],

the hidden vector hN
L is taken as the representation of the user sequence.

3.3 Contrastive Encoder

In the micro-video scenario, we think the relative locations among a group of
micro-videos that a user interacts with are not of great importance. Following the
calculation in the sequence encoder, unidirectional associations between items
are encoded into item embeddings, which is not amenable to the micro-video
scenario. To eliminate impact of unidirectional association between items on
item embeddings and reflect the essence of the order between micro-videos, we
build a contrastive encoder using contrastive learning, which consists of two basic
sequence encoders, as illustrated on the left side of Fig. 1.

We generate new sequences which are semantically equivalent to the real in-
teraction sequences by a reordering operation. More concretely, for a given posi-
tive interaction sequence su of the user u, i.e., su = [v1, v2, ..., v|su|], we randomly
shuffle a continuous sub-sequence [vr, vr+1, ..., vr+Lr−1], which starts at r with
length Lr = bα ∗ |su|c, to [v̂r, v̂r+1, ..., v̂r+Lr−1], where α is the proportion of re-
ordering. As a result, we get the reordered sequence sr = [v1, v2, . . . , v̂r, ..., v̂r+Lr−1,
..., v|su|].

After applying the reordering operation twice, we generate two new se-
quences sr1 and sr2 for su. The reordering operation does not increase or de-
crease the number of items in the sequence, i.e., |sr1| = |sr2| = |su|. Next, we
feed these two reordered sequences to the basic sequence encoders, respectively
and obtain corresponding sequence representations S

′
= [hN ′

1 ,hN ′

2 , ...,hN ′

|su|] and
S
′′
= [hN ′′

1 ,hN ′′

2 , ...,hN ′′

|su|]. Here, we only send micro-video sequence information
into the basic sequence encoder, deliberately ignoring the positional information
of the sequence. This is for contrasting two augmented sequences without any
disturbance from the positional information. This enables us to disentangle the
contrastive loss and positional information modeling, as a result, the param-
eter updating inducing by the contrastive loss and the updating of positional
embeddings do not affect each other.

Then, by the concatenation operation, we obtain ĥ
′
= concat(hN ′

1 ,hN ′

2 , ...,hN ′

|su|)

and ĥ
′′
= concat(hN ′′

1 ,hN ′′

2 , ...,hN ′′

|su|). Finally, in order to minimize the gap be-
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tween the representations of two sequences derived from the same original inter-
action sequence, we define the contrastive loss function in Eq. 6 as the reordering
sequence loss, where we adopt the dot-product operation to calculate the simi-
larity of two embeddings, i.e., for two embeddings a, and b, sim(a,b) = aTb.

Lcl

(
ĥ′, ĥ′′

)
= − log

exp
(
sim

(
ĥ′, ĥ′′

))
exp

(
sim

(
ĥ′, ĥ′′

))
+
∑

s∗∈S− exp
(
sim

(
ĥ′, ĥ∗

)) (6)

While defining the reordering sequence loss, we think that it is more rea-
sonable to take ĥ

′
, ĥ
′′
, the results of concatenating all hidden vectors of the

corresponding sequence representation, as parameters, because what we want
the reordering sequence loss to do is to measure the semantic difference between
two sequences. We have tried to replace ĥ

′
, ĥ
′′
with hN ′

L , hN ′′

L i.e., the last hidden
vectors, which is proved ineffective by experimental results.

Moreover, we adopt the following negative sampling method. Assume that
there are M sequences in a batch. Since we apply the reordering operation to
the original sequence (e.g., su) to generate two new sequences (e.g., sr1, sr2) , we
have a list of sequences with the length of 2M . We treat (sr1, sr2) as a positive
pair and the other sequences in the same batch as negatives, the latter forms
the set of negatives, denoted by S−. ĥ∗ is the concatenation of all the hidden
vectors in the representation of s∗.

3.4 Prediction and Loss Function

We calculate the score for each candidate micro-video vi by conducting the dot
product of sequence embedding hn

L and embedding ei of vi, as shown in Eq. 7.

Score(vi|{v1, . . . , vL}) = sim(hN
L , ei) (7)

We adopt the negative log likelihood with full softmax as the main loss
function. It can be written as follows.

Lmain = − log
exp

(
sim

(
hN
L , eg

))∑|V|
i=1 exp

(
sim

(
hN
L , ei

)) (8)

where eg is the embedding of the ground-truth micro-video. Besides, we have
the reordering sequence loss as an auxiliary loss. Finally, the total loss function
is shown in Eq. 9, where coefficient λ is a hyperparameter.

Ltotal = Lmain + λLcl (9)

3.5 Complexity Analysis

Space Complexity. In PDMRec, the learnable parameters are mainly from
the embeddings of micro-videos, i.e., {ei, i ∈ [1, |V|]}, the positional embed-
ding matrix P ∈ Rd×L, the parameters in multi-head self-attention, i.e., WQh,
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WKh, WV h,W
p
Qh, W

p
Kh ∈ Rd×dh, and the parameters in multiple MLPs, whose

number are |V| × d, Ld, d2/hd and d2, respectively. Therefore, the total space
complexity of PDMRec is O

(
|V|d+ Ld+ d2

)
.

For example, if training the model using WeChat dataset, the number of
the learnable parameters is 2264144, where the number of item embedding is
2129472, which illustrates that item embeddings account for the bulk of all the
parameters.

Time Complexity. The computation amount of PDMRec is mainly concen-
trated on the self-attention module and the MLPs, whose time complexity is
O
(
L2d

)
andO

(
Ld2

)
, respectively. Thus, the total time complexity isO

(
L2d+ Ld2

)
.

A favorite property of PDMRec is that the computation in each self-attention
module is fully parallelizable, which is suitable to GPU acceleration. Finally,
it should be noted that our model does not increase the computational cost,
compared to the state-of-the-art model such as DuoRec.

3.6 Discussion

Avoiding Noisy Correlations. Our model can avoid noisy correlations being
involved into sequence embeddings. For Eq. 5, we know sequence embeddings
comes from the aggregation of Sv + Sp. Now, we expand Sv + Sp in Eq. 10.

Sv + Sp = concat(Sv
1, ...,S

v
h) + concat(Sp

1, ...,S
p
h)

= concat(Sv
1 + Sp

1, ...,S
v
h + Sp

h)
(10)

We continue to expand Eq. 10 and obtain Eq. 11 as follows. For j ∈ [1, h],

Sv
j + Sp

j =softmax

(
ETWQj · (ETWKj)

T√
d/hd

)
ETWV j +

softmax

(
PTWp

Qj · (PTWp
Kj)

T√
d/hd

)
ETWV j

(11)

As shown in Eq. 11 , we apply linear projection matrices WQj ,WKj on
item embedding matrix E, apply linear projection matrices Wp

Qj and Wp
Kj on

positional embedding matrix P, and calculate the attention scores of E and
P in different latent spaces. These projection matrices are different from each
other and trained independently. Such the method adds no noisy correlations
into sequence embeddings, reflecting the actual role of micro-video positions.

Augmenting Equivalent Sequences. For data augmentation method, be-
sides the reordering operation, masking and cropping operations can also be
applied on the sequences. Given a sequence su, the masking operation refers
to randomly masking a proportion γ of items and the cropping operation is to
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randomly delete a continuous sub-sequence of length η ∗ |su|. However, in the
micro-video scenario, applying masking or cropping operations cannot guaran-
tee generating semantically-equivalent sequences. Therefore, we do not choose
these two operations. Experimental results in Section 4.4 also illustrate that
augmenting sequences by masking or cropping operations cannot achieve good
recommendations.

4 Experimental Evaluation

4.1 Experimental Setup

Datasets. We adopt the following two datasets for experiments.

• WeChat-Channels: a dataset released by WeChat Big Data Challenge
20214. It contains 14-day interactions from anonymous users on WeChat
Channels, a popular micro-video streaming platform in China.
• TikTok: a dataset released by Short Video Understanding Challenge 20195

hosted by ByteDance, one of the largest companies in the world engaged in
the micro-video streaming platform. It contains more than 275 million user
interactions with TikTok app.

Both datasets include engagement interactions such as watching and sat-
isfaction interactions such as like and favorite. However, not every interaction
between a user and a micro-video in the dataset reflect that the user likes the
micro-video, so we set some constraints on interactions and choose those sat-
isfying these constraints as positive interactions. More concretely, according to
the characteristics of different micro-video streaming platforms (e.g. the average
micro-video duration in WeChat and TikTok is 34.4s and 10.5s, respectively),
we use different criteria to obtain positive interactions on TikTok and WeChat.
From WeChat-Channels, we choose all the satisfaction interactions (such as likes
and comments) and interactions whose loop times is greater than 1.1 or watching
time is greater than 45s to form WeChat dataset. From TikTok, we randomly
sample 10% of users and choose their interactions whose loop times is greater
than 1.0, forming TikTok1. Also from TikTok, we choose all the interactions
that users like micro-videos to form TikTok2 dataset. Next, we remove users
and micro-videos with fewer than five interactions, respectively so as to guar-
antee that each user/micro-video has enough interactions. Then, for each user,
we sort his/her historical micro-videos by the interacted timestamp to obtain
his/her interaction sequence. These sequences compose the datasets used in ex-
periments. The statistics of processed datasets are shown in Table 1.

We adopt the leave-one-out strategy to divide the dataset into train/validation/
test sets. That is, for each user u, we split his/her historical sequence s =
[vu1 , v

u
2 , ..., v

u
|s|] into three parts: (1) the most recent interaction vu|s| for testing,

(2) the second most recent interaction vu|s|−1 for validation, and (3) all remaining
interactions for training.
4 https://algo.weixin.qq.com/problem-description
5 https://www.biendata.xyz/competition/icmechallenge2019/
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Table 1. Statistics of datasets.

Dataset #Users #Micro-videos #Interactions Density Avg. length of sequence

WeChat 19998 77985 2464798 0.16% 123.3
TikTok1 19960 55954 2434289 0.22% 121.9
TikTok2 30473 35716 684216 0.06% 25.5

Metrics. We employ two common top-k metrics, Recall@K and NDCG@K,
to evaluate recommendation performance. Recall@K calculates the proportion
of test items in top-k items of prediction scoring, while NDCG@K is a position-
aware metric which assigns larger weights on higher positions. Since we only have
one test item for each user, Recall@K is equivalent to Hit@K. In this paper, the
value K is set to 20, 50, 100.

In order to reduce the time cost of metric calculation, lots of previous work [6,
11, 12] adopts sampled negative items to calculate metrics. However, this method
may lead to inconsistent with exact metrics [21]. Therefore, we compute metrics
on the whole item set to evaluate the model performance. That is, for each user,
we rank all the micro-videos he/she has not interacted with by their scores rather
than only rank the sampled negative items.

Implementation Details. We implement our model with PyTorch, ini-
tializing all parameters by the normal distribution with mean 0 and standard
deviation 0.02. Embedding size is set to 64. The number of heads (i.e., hd) is set
to 2., the number of CAB (i.e., N) is set to 2. The proportion rate α of reorder-
ing is set to 0.2. Coefficient λ in the loss function is set to 0.1. Dropout rate is
set to 0.5. We use Adam as the optimizer with the learning rate of 0.001. Batch
size (i.e., M) is set to 512. The sequence length L is set to 100 for WeChat and
TikTok1 datasets, and 50 for TikTok2 dataset. Our code is available publicly on
GitHub6 for reproducibility.

We train the model by an early stopping technique, that is, when Recall@50
on the validation set has not been improved in 15 consecutive epochs, we stop
training the model.

4.2 Performance Comparison

We conduct comparative experiments, comparing our model with the following
six models.

• GRU4Rec+ [7]. It uses GRU modules to model user preferences by interac-
tion sequences and is improved with prefix sub-sequences as data augmen-
tation and a method to account for shifts in the input data distribution.
• STAMP [9]. It is a short-term attention/memory priority model which aims

to capture long-term user preferences from previous interactions and short-
term user preferences from the last interaction in a sequence.

6 https://github.com/Ethan-Yys/PDMRec
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• SASRec [11]. It firstly introduces the Transformer encoder to learn user rep-
resentations. It models use preferences through a self-attention mechanism
and achieves state-of-the-art performance at that time.

• BERT4Rec[13]. It learns via the BERT structure, that is, employs the deep
bidirectional self-attention to model user behavior sequences.

• CL4SRec [15]. It firstly uses contrastive learning to enhance user represen-
tations in sequential recommendation. Specifically, item cropping, masking
and reordering are applied to an original sequence to generate sequences for
calculating the contrastive loss.

• DuoRec [16]. It is also a method based on contrastive learning. It uses both
supervised and unsupervised methods to generate sequences for calculating
contrastive loss.

Among these competitors, GRU4Rec+, STAMP, SASRec and BERT4Rec are
from a popular open-source recommendation framework RecBole7. CL4SRec and
DuoRec are from the implementation of Zhao et al.8 To be fair, in all the models,
we set the dimension of item embedding to 64 and batch size to 512. Particularly,
we adopt the 2-layer encoder for the models which apply self-attention.

Experimental results on WeChat, TikTok1 and TikTok2 are listed in Table 2,
where the number in a bold type is the best performance in each row and the
underlined number is the second best in each row.

From the results, we have the following observations.

• The attention-based sequential recommendation models are inferior to ones
which integrate additional contrastive learning module in terms of both Re-
call and NDCG. It makes us believe that augmenting data more targeted
for the specific scenario and optimizing in different latent spaces do improve
performance.

• The classic baseline i.e., GRU4Rec+ performs not bad, which is beyond our
expectation. As shown in Table 2, the worse one in performance on three
datasets is STAMP instead of GRU4Rec+. In particular, on datasets WeChat
and TikTok1 which contain not only explicit feedback but also implicit feed-
back, GRU4Rec+ is even superior to several attention-based models such as
SASRec. It is supposed that GRU4Rec+ is more appropriate to modeling
long sequences.

• Most importantly, PDMRec surpasses all the competitors in all metrics on
the three datasets. For example, on the TikTok1 dataset, PDMRec out-
performs the second best model, i.e., DuoRec, about 6.23% on Recall@50
and 6.02% on NDCG@50. We think the good performance of PDMRec
stems from two steps of position decoupling: learning positional embed-
ding independently and optimizing representations of reordered sequences
for position-independence semantic conformity.

7 https://github.com/RUCAIBox/RecBole
8 https://github.com/RuihongQiu/DuoRec



Improving Micro-video Recommendation by Controlling Position Bias 13

Table 2. Recommendation performance on three datasets.

WeChat
Metrics GRU4Rec+ STAMP SASRec BERT4Rec CL4SRec DuoRec PDMRec Improv.(%)

@20 0.1093 0.0888 0.1069 0.0892 0.1035 0.1108 0.1157 4.42%
Recall @50 0.2125 0.1727 0.2095 0.1762 0.2057 0.2169 0.2224 2.54%

@100 0.3270 0.2647 0.3224 0.2744 0.3161 0.3263 0.3423 4.90%

@20 0.0407 0.0339 0.0388 0.0322 0.0386 0.0410 0.0422 2.93%
NDCG @50 0.0610 0.0504 0.0591 0.0494 0.0587 0.0619 0.0632 2.10%

@100 0.0795 0.0652 0.0774 0.0654 0.0766 0.0796 0.0826 3.77%

TikTok1
Metrics GRU4Rec+ STAMP SASRec BERT4Rec CL4SRec DuoRec PDMRec Improv.(%)

@20 0.1003 0.0815 0.0112 0.0842 0.1066 0.1139 0.1190 4.48%
Recall @50 0.1915 0.1503 0.2028 0.1609 0.2005 0.2071 0.2200 6.23%

@100 0.2991 0.2308 0.3087 0.2525 0.3062 0.3114 0.3281 5.36%

@20 0.0395 0.0342 0.0462 0.0319 0.0424 0.0465 0.0481 3.44%
NDCG @50 0.0574 0.0477 0.0640 0.0470 0.0609 0.0648 0.0687 6.02%

@100 0.0748 0.0607 0.0812 0.0618 0.0780 0.0817 0.0861 5.39%

TikTok2
Metrics GRU4Rec+ STAMP SASRec BERT4Rec CL4SRec DuoRec PDMRec Improv.(%)

@20 0.0514 0.0422 0.0777 0.0623 0.0727 0.0808 0.0830 2.70%
Recall @50 0.0979 0.0795 0.1240 0.1045 0.1177 0.1266 0.1332 5.20%

@100 0.1547 0.1213 0.1752 0.1548 0.1698 0.1781 0.1894 6.34%

@20 0.0205 0.0175 0.0475 0.0314 0.0432 0.0479 0.0491 3.55%
NDCG @50 0.0297 0.0248 0.0566 0.0398 0.0520 0.0569 0.0590 3.69%

@100 0.0388 0.0316 0.0645 0.0479 0.0604 0.0653 0.0681 4.29%

4.3 Ablation Study

We conduct the ablation study on our model to observe the effectiveness of dif-
ferent components. We compare our model with three variants, i.e., PDMRec1,
PDMRec2 and PDMRec3. PDMRec1 and PDMRec2 are PDMRec models which
remove the contrastive encoder and the positional encoder, respectively. PDMRec3
is the PDMRec model which removes the positional encoder but adopts the ad-
dition of item embedding and positional embedding as the input of the model.
The results are shown in Fig. 2.

From Fig. 2, we find the variant PDMRec1 suffers severe declines in per-
formance, which illustrates that optimizing the reordering sequence loss has a
favorable effect on improving the performance. Moreover, PDMRec2 shows the
worst performance while comparing with PDMRec1 and other variants. It proves
that lacking position information will lead to sharply declining in performance.
Further, we compare the performance of PDMRec and PDMRec3, where they
provide the different ways of fusing position information into sequence embed-
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Fig. 2. Ablation study on two datasets

dings. Obviously, PDMRec has better performance, which shows that encoding
positional embeddings separately is necessary.

4.4 Impact of Contrastive Learning Strategies

We conduct experiments to evaluate the rationality of contrastive learning strate-
gies adopted in this paper. The contrastive learning strategies involve data aug-
mentation and contrastive learning loss calculation.

By replacing the reordering operation in PDMRec with other operations in
CL4SRec, we can obtain different variants: PDMRec4 using the masking opera-
tion, PDMRec5 using the cropping operation, and PDMRec6 using the masking,
cropping and reordering operations. In experiments, we set γ to 0.5 and η to 0.5,
the values which lead to the best performance of experiments in [15]. The per-
formance of these variants is listed in the columns 3-5 of Table 3. From the
results, we find that three variants fall far behind PDMRec in terms of Re-
call and NDCG. These results illustrate that using the reordering operation to
generate new sequences is effective.

For the contrastive learning loss calculation, in our model, we use ĥ
′
and ĥ

′′
,

which are the output of the Scaled Dot-Product Attention in the basic sequence
encoder, to calculate the loss. An alternative is to take last vector ĥN ′

L , ĥN ′′

L

in S
′
and S

′′
to calculate the loss, which is the way CL4SRec adopts. Another

alternative is to take the output of Add&Norm layer to calculate the loss, which
is the way DuoRec adopts. The corresponding variants are denoted by PDMRec7

Table 3. Recommendation performance of different contrastive learning strategies.

Metrics PDMRec PDMRec4 PDMRec5 PDMRec6 PDMRec7 PDMRec8

@20 0.1157 0.1118 0.1068 0.1103 0.1081 0.1099
Recall @50 0.2224 0.2157 0.2144 0.2138 0.2134 0.2183

@100 0.3423 0.3277 0.3311 0.3309 0.3297 0.3282

@20 0.0422 0.0416 0.0393 0.0400 0.0393 0.0405
NDCG @50 0.0632 0.0620 0.0606 0.0604 0.0600 0.0619

@100 0.0826 0.8010 0.0794 0.0794 0.0788 0.0796
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and PDMRec8. The performance of these variants is listed in the columns 6-7
of Table 3.

We find PDMRec significantly outperforms PDMRec7. It illustrates using all
the hidden vectors to calculate the loss is able to optimize augmented sequences
more comprehensively. Moreover, while comparing to PDMRec, PDMRec8 has a
relatively low performance, which shows that our design avoids positional errors
and has a positive effect on performance.

5 Conclusion

In this paper, we examine the characteristics of the micro-video scenario, rethink
the role of positions in interaction sequences, and then propose a micro-video rec-
ommendation model PDMRec. For improving the representations of sequences
and avoiding the noise being added into, PDMRec encodes micro-videos and
positions in sequences, respectively, computing the micro-video contextual cor-
relations and positional correlations with different parameterizations. Further,
PDMRec adopts the reordering operation to augment interaction sequences and
presents a reordering sequence loss to remedy the negative impact brought by
micro-video positions in sequences. Results of experiments on real-world datasets
show that our PDMRec model is effective in terms of Recall and NDCG, and
outperforms the state-of-the-art baselines.
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