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Abstract. This paper tackles Origin-Destination (OD) matrix recon-
struction at a station level, which consists in computing the volume of
passengers traveling between two different stations on a public trans-
portation network. This information is critical for the transport operator
to compute various indicators concerning the network’s state and per-
formance such as vehicle occupancy and travelers’ behavior. Trip recon-
struction for smart card holders, whose history of validations is available,
has been thoroughly investigated in prior work. Conversely, trip recon-
struction for non smart card holders has received less attention, mainly
due to the difficulty of obtaining ground truth data. Among recent work
in this domain, very few contributions have tackled large networks in
their entirety, with millions of validations over a month and the compu-
tational challenges that come with it.

In this work, we present a new Bayesian Markov Model for OD matrix
reconstruction. The novelty of our model lies in its scalability and the fact
that it uses all available data, including Automated Fare Collection (i.e.
smart card holders) data and Automatic Passenger Counting data (i.e.
data from counting sensors), to accurately infer the trips’ distribution.
Moreover, the proposed approach produces proper OD matrices while
taking into account sensor noise and fraud.

We empirically establish the relevance, robustness, and accuracy of the
proposed method compared to the popular trip chaining algorithm and
a previous Markov based approach on real-world, large-scale industrial
datasets for two transportation networks in major cities.

Keywords: Origin Destination matrix - Bayesian - Markov model - Real
world data - Automatic Passenger Counting data.

1 Introduction

Origin-Destination (OD) matrix reconstruction is a key element of public trans-
port management. It provides insights regarding the network’s performances and
state, which drive strategic decisions regarding the network configuration, such as
determining the line routing or evaluating the optimal level of service. OD recon-
struction consists in reconstructing the flow of passengers who traveled from one
station (origin) to another (destination) during a given period. The OD matrix
is defined as the flows for all possible pairs of stations in the network. Since the
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origin stations are known in most cases (through user ticket validations when
boarding the vehicle), accurately reconstructing these flows boils down to re-
constructing passengers’ alighting stations. For smartcard holders, most current
approaches rely on a procedure called trip chaining that leverages consecutive
validations within a predefined time frame. Each validation is tracked thanks to
the related smart card unique identifier, and the associated alighting station is
deduced from consecutive boarding stations.

Although very effective, this approach cannot be applied to single-use ticket
holders or even smartcard holders whose behavior is not compatible with trip
chaining rules based on expert knowledge. These drawbacks motivate the ex-
ploration of alternative approaches that use external sensors as additional data
to reconstruct passengers’ trips. Akin to traffic counts that provide information
about vehicles entering and exiting a network of highways, counting cells are
sensors installed at the vehicles’ doors to count the number of passengers board-
ing and alighting the vehicle at each station. The availability of data from these
detectors can often counterbalance the lack of information about individual pas-
sengers. However, the uncertainty associated with these sensors’ measurements is
significant due to intrinsic sensor noise and high false detection rates (passengers
may trigger multiple detections). Hence, filtering and denoising raw sensor data
is mandatory for these countings to be used. Finally, these sensors can be costly
to install and maintain for transport operators leading to a partial equipment
rate of the vehicle fleet. Altogether, these issues make OD reconstruction chal-
lenging and call for end-to-end approaches that consider sensor quality, scarcity,
and scalability.

In this work, we propose a novel full Bayesian Markov-based model for OD
reconstruction that considers all commonly available data sources. Our approach
is based on the finding that sampling OD matrices based on Markov chain mod-
eling of agents’ behavior amounts to drawing from a multivariate hypergeometric
distribution. Moreover, we overcome the short trip problem, which is the main
drawback of such an approach, by considering a biased version of the hyperge-
ometric sampling. Subsequently, we tackle two problems that commonly arise
when dealing with real-world data: noise and scarcity. We propose a new de-
noising method for counting sensors that preserve the OD matrix structure and
use a time series similarity metric to deal with unequipped vehicles. Finally, we
show that this approach can be applied to large-scale networks with real-world
data to better reconstruct the flow of passengers.

Section [2] introduces the basic concepts of OD matrix and trip reconstitution
along with related works. Then, Section [3] presents the various aspects of our
approach toward station-level OD reconstruction. Finally, Section [4] is devoted
to the practical evaluation of our approach on real-world industrial use cases.
Detailed proofs and derivations are deferred to the supplementary material.
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Fig. 1: Hlustration of trip chaining with deterministic rules: the first trip is
chained since a candidate alighting station lies within the time and distance
thresholds At and Ad, while the second trip cannot be chained since no candi-
date alighting station abides by the thresholds.

2 Related work

Historically, OD matrices were obtained as part of the four-step model [25] for
demand modeling using fully deterministic models inspired by physics such as
the gravity [32] and the entropy models [31] are the best-known examples.
This work focuses on OD matrix reconstruction in public transport, a sub-
field of OD reconstruction that presents a few peculiarities, notably considering
the amount and quality of available data. Thanks to the recent advancements in
technologies, many transportation agencies are now using Automatic Data Col-
lection (ADC) systems, that include Automated Fare Collection (AFC) systems,
i.e. smart cards most of the time; Automatic Vehicle Location (AVL) systems,
giving access to real arrival time of vehicles to stations; and Automatic Passenger
Counting (APC) systems, with sensors installed on board the vehicles.

Although these increasingly abundant sources of data have been used for var-
ious applications in the last two decades (mining travel patterns, trip purpose
detection among others) [5], this work tackles another major application which
is station-level OD reconstruction (a review can be found in [13]). More specifi-
cally, it focuses on estimating alighting locations from known boarding locations
(thanks to smart card validation data).

Until now, the area of OD reconstruction has been dominated by rule-based
approaches using smart card data. Notably, trip chaining is a method that in-
fers alighting locations from successive boarding locations, supposing the user
has not traveled more than a distance threshold during a time threshold be-
tween the sought alighting and the next boarding [29/21U13] (see Fig. [1). Other
advanced methods are probabilistic [TIJI7IT2] or based on the full user’s history
[29ITITR/19].
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Recently, increasing attention has been drawn to machine learning approaches
[34], notably with neural networks [I5I]. Machine learning is expected to bridge
the gap between different data sources, e.g. smartphone location data [33/9] or
land use data [2328]. More recent works use graph convolutional networks to
infer OD flows [24I35123] but require labeled training data.

Finally, while the vast majority of the literature focuses on exploiting AVL
and AFC (i.e. vehicle location and smart card) data, only a few studies make use
of other sources of data and especially APC data. APC data is mostly used as a
scaling factor to the OD matrix extracted from previous methods, using methods
such as Iterative Proportional Fitting (IPF) [2026/T4/7]. However, IPF as well as
other optimization methods [I6I22] do not enable any uncertainty estimation. On
the opposite, statistical frameworks have been proposed and notably Bayesian
approaches [20/10/36], with the recurrent drawback of being hardly scalable to
larger and more complex networks. Also, the work from [3] derived a statistical
approach that is inspired by the maximum entropy method, and the study from
[14] proposed a Markov-chain Monte Carlo method to infer route OD with large
amounts of APC data only.

However, few of these works consider the imprecision associated to APC data:
they are usually considered 100% reliable while studies estimated the accuracy
of standard infrared sensors to be around 80% [8]. Evaluating the quality and
accuracy of the counting instruments is hard, while APC data can cover the
entire network and make indicators easy to calculate [4]. In addition, the existing
methods often lack validation through real transportation data, and when a
validation procedure is proposed it is often on a very small perimeter, missing
demonstration of scalability [13]. For instance, [27] validate their approach with
an OD survey and a group of volunteers. This work proposes a denoising module
for the counting cells data to be used more reliably by a Bayesian Markov model
for OD reconstruction. The experiments are conducted on real data collected
from Casablanca (Morocco) and Orléans Métropole (France) public transport
networks.

3 Origin destination matrix reconstruction using
ticketing and count data

This section describes the different steps of the proposed OD matrix reconstruc-
tion procedure. This method is based on a Bayesian Markov model inspired
by [20] that takes into account the validations (AFC) and counting cells (APC)
data per course. The latter is first denoised to get valid boarding and alight-
ing counts. Then, a biased hypergeometric sampling integrating priors on trip
lengths is proposed to simulate trips for each course based on the denoised
counts. Finally, the posterior parameters of the Markov model are inferred and
extrapolated to courses without counting cells.

In what follows, we consider a network with different routes (i.e. lines with
specified directions). A course corresponds to a vehicle following a given route
with a predefined schedule. For clarity, unless otherwise specified, we focus on a
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single course that occurs on a specific route. Let us denote by n the number of
stations on the route and Y;, Z; respectively the number of passengers boarding
and alighting at station ¢ and p;; the probability of alighting at station j con-
ditionally to the fact that a passenger boarded at station i. The passengers are
assumed to behave the same way and independently of one another. The pas-
sengers’ behavior is described by a non-homogeneous Markov chain valued on a
binary state space.

The inference relies on alighting counts, which in this case stem from counting
cells measures and are typically tainted with imprecision. The following aims at
correcting the counting cells noise before any inference of the model.

3.1 Count data preprocessing

This part presents a preprocessing method for counting cells measures. Due to
multiple factors, all referred to as noise in what follows, the actual observed

boarding counts Y; (resp. alighting counts Z;) differ from the real ones by a
. 4+IN N +,0UT __—,0UTy,
noise 7, —-n; (resp. n; —-n; ):

Vi =Y+ —p N N S Bin(Y;,pt), ™Y ~Bin(Yi,pT). (1)

K2 K2

The same applies for (Z~,)Z with n;r OUT and M, also following binomial

distributions Bin(Z;, p™) and Bin(Z;,p~). Note that the noise is not required to
be symmetric, as counting cells may over-count more than they under-count or
conversely.

,OUT

Fraud removal In this work, only trips corresponding to passengers who val-
idated their tickets are reconstructed. Counting cells, however, record all pas-
sengers entering and exiting the vehicle, regardless of whether they did validate.
Therefore, the total passenger count Z; alighting at station ¢ of a given course
must be disaggregated between ZI fraudsters and Z) persons who validated
their ticket. To estimate the number of fraudsters on board, a two-step ap-
proach first determines the total number of fraudsters during the course and
then allocates them to different stations.

Let F be the total number of fraudsters on a given course and S the total
number of passengers on the course. S = F + 17Y " is unobserved since neither
the true boarding nor alighting counts are known. Nevertheless, two noisy ver-
sions of it are observed: Sy = 17Y and Sy = 17Z. Therefore, S is the sum of
the observed count Sy plus the sum of the noises for each station measure. Since
the (n;r’IN)l- and (n;’IN)Z- are i.i.d variables, their sum also follows a binomial
distribution of parameters (>, Y; = S,p*) and (S, p~) respectively. Formally,

Sy =D Yi= Sty ™ g™, 0™ ~ Bin(S,p7), 5™ ~ Bin(S.p7). (2)
i=1

Thanks to the conditional independence between Sy an Sz conditionally to S,
the posterior distribution for S is derived and therefore the number of frauding
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passengers F' is sampled from this distribution:

p(S[Sy, Sz) < p(Sy [S)p(S2]S5)p(S) (3)
o p(nyy ™ = ™M 8)p(ng O = 0 OUT1S)p(S).

In addition, each station 7 is assigned a predetermined fraud rate f;. The f;
can either be provided as prior expert knowledge or computed as the average
fraud rate from boarding counting and ticketing data over all courses passing
by station ¢ in the opposite direction, making the hypothesis that the alighting
fraudsters rate in one direction, aggregated over a sufficient number of courses,
is approximated by the boarding fraudsters rate in the opposite direction. From
there, the F' fraudsters of a given course are disaggregated into F; fraudsters
alighting at station i, by sampling them from a Fisher’s noncentral hypergeo-
metric distribution with weights f; and initial number of objects Z;. The F; are

removed from the Z; to yield adjusted alighting counts denoted as Zi = 7,—F,.

Alighting counts denoising with Gibbs sampling The following aims at re-

~ ad
fining the adjusted alighting counts Zia to obtain a denoised alighting sequence
that matches the validations boarding counts Y;". Such an alighting sequence is
further referred to as a feasible alighting sequence.

Definition 1. A feasible alighting sequence with respect to a boarding sequence
Y = (V1,...,Y,-1,0) € N” is a sequence Z = (0, ZQ,...,Zn) € N" such that

ZY ZZZ» (4a)  Viclln- ZYkz Z,.  (4b)

The fea51ble ahghtmg set is the set S(Y') of feasible alzghtmg sequences w.r.t. Y.

Conditions and (4b)) simply enforce the following two physical constraints:
the number of boarding passengers must be equal to those alighting during the
course, and occupancy must always be nonnegative. The goal is thus to select
a feasible alighting sequence close to the observed one (Z;). Although the noise
model presented in Eq. . is quite simple, the dependencies between the Z;
stemming from constraints and make it impossible to sample each count
independently and call for a more sophisticated sampling algorithm. Hence, a
Gibbs sampler approach is adopted to iteratively sample one of the alighting
counts Z; conditionally to all others sampled so far, so that constraint is
satisfied all the times. Note that to abide by condition 7 one of the values of
the alighting sequence must act as a pivot. Z; is arbitrarily chosen to balance
the sum of the remaining Z;. From the noise model defined in Eq. , the
conditional posterior probability of Z; given Z_; = (Za, ..., Zi—1, Zix1, -y Zn), ¥
and Z writes

VkEN, p(Z=kY,Z2% Z_)) « p(Z:""|Z; = k) p(Z; = k)

~ ad (5)
P\ 2012 =85=-)_Z—k|p|Z1=5-) Zi—k
k#i k#i
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Algorithm 1 Gibbs sampler

Require: Y, Z% N the number of sampling iterations, n the number of stops

ZO = (0,Y1,...7Yn,1)
for ¢t € [1, N;r] do
for j € [2,n] do
n J—1 n
m;=max » Yi—[ > 2l— > z,tc_l>

i€[1,5] k=it1 k=i+1 k=j+1

k=j+1
For k € [[mj,Mj]], Pk = p(ZJ = ]{}|Zad,Zl = Z§7~-~7Zj—1 = Z§'713Zj+1 =
A Z, =2

Jj—1 n
M]]].TY<Z Z]tC+ Z Z]i_l)
k=2

1
Sample 2§ ~ Discrete([pm, , - pas,])
end for
n
2t = <O, 17y — 3 28, 28, ,z,ﬁ)
k=2
end for

return Z = zNir

One can show that conditions and imply that Z; has a finite support,
i.e. that there exist two non-negative integers m; and M; such that p(Z; = k) =0
for all k not in [m;, M;]. The full conditional probability is finally derived in
closed form, provided that a prior is chosen for the true alighting counts. If
no information is available, one could choose a uniform prior over the interval
[m;, M;] for the alighting count Z;. Finally, Gibbs sampling requires a valid ini-
tialization, i.e. an initial alighting sequence that belongs to the feasible alighting
set. For instance, z° = (0,Y}",..., Y, ;) is a feasible alighting sequence w.r.t.
YV, The full algorithm is presented in Algorithm [I| An improved initialization
to reduce the number of iterations is proposed in the supplementary material.

3.2 Trips sampling and posterior estimation

The model presented in this section uses the denoised alighting counts for poste-
rior parameter estimation and trip sampling. A first-order Markov model is first
described as a basis for the proposed approach.

Definition 2. The first-order Markov model is defined by a set of n — 1 param-
eters (0a, ...,0,) such that for all i € [2,n],

P& =0_1=1)=0;, p&=1-1=1)=1-6, (6)

with & the variable indicating if the passenger is on board as the vehicle departs
from station i (£, =1) or not (§ =0).
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The above statement conveys that the model is without memory and "forgets"
about the passengers’ boarding stations, only focusing on whether they were on
board the vehicle when it arrived at a station i.

The Markov property allows for simple derivation of the probability p;; for
a passenger to alight at a station j provided that they boarded at station 4 [20]

pij =0, 1:[ (1 —0k). (7)

k=i+1

The parameters’ likelihood is directly derived from the boarding and alighting
counts [20] and writes

i—1
Z;|0; ~ Bin <Z Y — Zy, 9i> . (8)

k=1

Finally, to obtain a full Bayesian model, it is needed to choose a prior distribution
over the set of parameters (0;)? ;. For clarity and simplicity of derivations, we
set 0; ~ Beta (o, §;) with hyperparameters «, § inferred from the chained trips.
Once sampled from the posterior distribution, the model’s parameters 6 are used
in Section [3.3] to extrapolate to courses without counting cells.

However, the first-order Markov model’s shortcoming lies in that all pas-
sengers are considered equal: they all share the same probability to alight at
a given station regardless of their boarding station, as long as they are in the
vehicle. As a direct consequence, the longer the trip, the less likely it is since
pij =0, Hi;hﬂl —0k) ~ O(677%). The probability of staying in the vehicle for
j — @ stations decays exponentially. This is far from being realistic and clashes
with empirical observations. Indeed, over various networks and cities, it is fre-
quent for the mode of the trip length distribution to be located around a length
of 5 with a slow decay followed by a more rapid decay. Therefore, the following

proposes a sampling procedure to overcome the short trips issue.

Let us denote by X;; the number of passengers that boarded the vehicle at
station ¢ and alighted at station j. Formally we are looking for (X;;);; given
(Yi)k, (Zk)k. Here, X = (Xi;);; is the OD matrix. Although in general the un-
derlying true trip length distribution is unknown, chained trips provide insights
into this distribution and prior information. Once estimated, these priors are
used to bias our sampling procedure using a Fisher’s noncentral hypergeometric
distribution for (X;;);|Y, Z, L where L are the trip length priors. The practical
details are deferred to the supplementary material.

This result extends the work of [20] in case priors are available and explores
how to leverage biased multivariate hypergeometric distributions to sample di-
rectly from the model. As shown in the experiments section, it also alleviates
the so-called short trips issue. Algorithm [2] summarizes the different steps to
reconstruct the OD matrix from counting cells observations.
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Algorithm 2 OD matrix reconstruction for courses with counting cells on a
given route

Require: p(f) prior for the 0 parameters of the first-order model, L prior for
trips lengths for the considered route, C all courses, (f;); fraud rates by
station 4, Ng;,, number of simulations

1: for course ¢; € C do
2:  for k € [1, Ngim] do

3: 784 — REMOVE FRAUD FROM ALIGHTING COUNTS(Y,, Yy, Zy, 1) (Sec-
tion [3.1))
4: Zrt = SAMPLE FEASIBLE ALIGHTING COUNTS(Y2¢, Z24 V,V) (Sec-

tion

5: 0.+ = INFER POSTERIOR PARAMETERS(Y,Y, Z 4, p(6)) (Section [3.2)
6: Xy ¢ = SAMPLE FEASIBLE OD MATRIX(Y,Y, Z) 4, L) (Section [3.2)

7:  end for

8: X = MODE((Xk7t)k)

9: end for

10: return (Xy),, (Gk,t)k,t

3.3 Extrapolation to courses without counting cells

Most of the times, due to the high cost of equipping vehicles with counting
cells, only a fraction of the fleet operates with them. This is problematic since
the proposed approach relies on alighting counts to simulate alighting stations.
However, other courses associated to the same route can be used to extrapolate
the first-order model’s parameters on non-equipped courses.

More specifically, consider a target course cr, that is associated with route
r € R. The idea is to match the target course to some of the courses with count
data on the same route (ct,); which are available in the data history.

The proposed method considers a course as a temporal series based on its
station-wise validations: Y,V = (Yﬂ/t, "'an;l,t)' Two courses are said to be similar
if their validations are similar, for some time-series similarity metric. Here, Dy-
namic Time Warping (DTW) [30] is used as the similarity metric. Similar courses
are the k-nearest neighbors for the DTW metric with k set experimentally.

C(T,r) is then the subset of courses {c; |c; ris similar to ¢y} that contains
all courses matched to cp, and O(T, ) is the set of parameters of the first-order
Markov model for the matched courses: O(T,r) = {(014,...,0n1)e|t € C(T,7)}.
Then, the parameters 61 ; for the target course are sampled as follows for all
stations 7 in [1,n]:

07, ~ N(0,00), (9)

with 6 = (61, ..., 0,,) the experimental average and oy = (0y,, ...0s, ) the standard
deviation of these parameters over all courses belonging to C(7,r).
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4 Experiments

This section aims at testing the proposed improved Bayesian Markov model.
Some considerations on time and space complexity are developed, and the accu-
racy and robustness of the proposed method are discussed.

4.1 Experimental setup

The experiments are performed on two different networks. The first one is the
Casablanca network with two streetcar lines of 30-40 stations each, totaling
more than 100,000 boarding validations per day on average. This network is
of high interest since passengers validate when they board but also when they
alight, therefore providing ground truth data. However, none of the streetcars are
equipped with counting cells, which have been simulated for the experiments (see
supplementary material). The Orléans Métropole network is used for scalability
assessment. It has a more complex topology than Casablanca’s, with more than
50 bus and streetcar lines, numerous connections, and around 70,000 validations
and 2,000 courses per day. Counting cells data is available, but this network does
not give access to ground truth data since passengers validate only when they
board. Both networks are illustrated in the supplementary material.

Five simulations are performed for each course in the dataset to come up
with five candidate alighting stations for each passenger. The mode (i.e. the
most probable station) is designated as the assigned alighting station. In the
simulations, p* and p~ the counting cells noise parameters are both set to 0.4.
The predefined fraud rates f; are the same for all stations (the absolute value
is not important since they only serve as bias for the hypergeometric sampling).
All algorithms are implemented in Python and can run on multiple cores. The
BiasedUrn library [6] is used for hypergeometric sampling.

4.2 Scalability

Table[I] summarizes and compares the time and space complexity of trip chaining
and the proposed model. For trip chaining, passengers without an alighting sta-
tion are aggregated by boarding station and their alighting stations are inferred
simultaneously for the whole batch, which is done in O(n?). The proposed model
utilizes counting cells at the course level and therefore has a time complexity
that is growing linearly with the number of courses |C|. Moreover, the time com-
plexity is directly proportional to the number of simulations Ny. Regarding the
space complexity, since all of the passengers’ candidate alighting stations are
stored, the space complexity is proportional to the number of passengers P and
the number of simulations.

However, the implementation still runs comfortably on a laptop: for instance,
running 10 simulations on a month of data for the Orléans Métropole network
(more than two million validations) takes up to 2 hours on an Apple M1 proces-
sor. Moreover, if multiples cores are available, courses can be inferred indepen-
dently on different cores, speeding up the simulation process.
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Table 1: Time and space complexity comparison.

Model Time complexity Spatial complexity
Trip chaining O(n?) o(pP)
Proposed model ~ O(n?|C|Ns) O(PNy)

Table 2: Comparison of the proposed method with three baselines along three
metrics compared to ground truth in Casablanca network.

KL Accuracy  Avg. max.

divergence occupancy error
Random model 0.45 6% 5.5%
Trip chaining [29] 0.15 10% 3.8%
Markov model [20] (5 simulations)  0.075 15% 0%
Proposed model (5 simulations) 0.07 17% 0%

4.3 Accuracy of trips reconstitution

Three baselines are considered: a random model that assigns to each passenger
an alighting station randomly, the popular trip chaining algorithm [29], and the
Markov model from [20], to be compared with the proposed improved Bayesian
implementation. For trip chaining, passengers whose validation could not be
chained are assigned an alighting station following the distribution of chained
trips. The Casablanca network is used here with simulated noise-free counting
cells and alighting validations removed: the models are run on boarding valida-
tions only, and the resulting OD matrices are compared to the true OD matrix
obtained from both boarding and alighting validations.

Table[2] compares the proposed model to the baselines according to three met-
rics: the Kullback—Leibler (KL) divergence between the predicted and the true
OD matrices, the accuracy of individual trips (whether the predicted alighting
station is correct w.r.t. the ground truth) and the maximum relative error on
the occupancy, averaged over all courses. The proposed model outperforms the
baselines considering any metric. Both Markov model based approaches obtain
a perfect occupancy estimation: indeed, the models are designed to comply with
the provided boarding and alighting counts per course. Here, perfect counts are
simulated, resulting in errorless occupancy estimation.

Trip length distribution The following experiment evaluates the impact of
adding priors and biasing the Hypergeometric distribution to obtain more realis-
tic trip lengths. The same Casablanca dataset as above is used. Fig. 2] compares
the trip length distribution obtained by the vanilla Markov model (top figure)
from [20] to the proposed one with priors over trip lengths (bottom figure). In-
corporating priors results in a trip length distribution much closer to the true
distribution: the sum of the absolute errors was reduced by over 50%.
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Fig. 2: Top: Markov model without priors. Bottom: Markov model with priors
on trip length. The left plots display the distribution of trip lengths over all
trips, and the right plots show the relative difference between the predicted
distribution and the ground truth distribution.

4.4 Robustness

In this part, results are shown for the proposed model only since neither the ran-
dom model nor trip chaining makes use of counting cells. Moreover, the Markov
model from [20] does not deal with situations where count data is not perfect.

Influence of the noise level and fraud This experiment evaluates how the
noise in counting cells data affects the different metrics when considered with
and without fraud. The dataset from Casablanca is still used, but counting cells
are simulated with a noise level p.

Table [3] presents the same three metrics with respect to Casablanca ground
truth with different noise levels and with the presence or absence of fraud. The
proposed model is shown resilient to noise: even with significant sensor noise
levels, the KL divergence and the accuracy remain almost as high as when there
is no noise. However, it is less robust to fraud, even in the absence of noise.
This is explained by the fact that the fraud disaggregation algorithm assigns the
inferred number of fraudsters to the course stations based on station fraud rates
which are given as prior data and may be quite inaccurate. Future work may
explore alternate approaches to station-level fraud rate estimation.
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Table 3: Comparison of the performance metrics as a function of the noise level
and of the presence of fraud. The first four lines do not include fraud, while the

two last do.

KL Accuracy Avg. max.
divergence occupancy error
No fraud No noise (p = 0) 0.069  16.6%(28.9%) 0%
Low noise (p = 0.1) 0.071  16.5% (28.8%) 1.2%
Moderate noise (p = 0.2) 0.074  16.3% (28.7%) 1.4%
High noise (p = 0.4) 0.077  16.2% (28.4%) 1.6%
Fraud  No noise (p = 0) 0.101  14.9% (27.3%) 1.5%
High noise (p = 0.4) 0.105  14.2% (26.6%) 1.8%
2y - +
g T
/’)‘_ ___________________
< 18 e +
5 ST T
> ¥ 0 ==
§ 16 /',,/',,/ T
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Fig. 3: Alighting station estimation accuracy with respect to the number of sim-
ulations of the proposed model, for varying equipment rates (25% CC means
25% of courses are equipped with counting cells), compared to trip chaining.

Influence of equipment rate Here, the sensitivity of the proposed model
to lower coverage in counting cells is examined. To this end, counting cells are
simulated only for a portion of all vehicles in the Casablanca network.

Fig. [3| depicts the accuracy of passenger trip reconstitution (i.e. the per-
centage of correctly inferred alighting stations) as a function of the number of
simulations of the proposed model, for different scenarios depending on the per-
centage of courses equipped with counting cells. One can see that even with
low equipment rates, the proposed model consistently outperforms trip chain-
ing (black dotted line). This is particularly important as, for most networks,
equipment rates do not exceed 50%. In addition, the accuracy loss resulting
from having incomplete data can be compensated by an increased number of
simulations at the cost of a linear increase in run time.

5 Conclusion and perspectives



14 V. Amblard et al.

5.1 Conclusion

This paper aims to reconstruct Origin-Destination matrices to better understand
flows in public transport networks. The idea is to infer each passenger’s alighting
station with the data collected from the operators, the counting cells and the
geolocalised stations. While recent statistical approaches may use sophisticated
probabilistic models that are not scalable, we started from the model introduced
by [20] which allows trips to be directly simulated and the parameters’ distri-
bution expressed in a closed form. Our implementation improved this model by
using prior knowledge about the OD matrix that a trip chaining algorithm can
provide. More importantly, several additions were built on top of this model, al-
lowing us to tackle various phenomena that frequently occur when dealing with
large-scale and real data and significantly affect the quality of the resulting OD
matrix. Specifically, the objectives of these additions are to denoise count data
and take fraudsters into account using a Bayesian approach. Dealing with both
at once is challenging because their effects tend to mix and potentially cancel
out. In the end, we demonstrated the robustness and accuracy of this approach
on two real-world transportation networks. To the best of our knowledge, this
approach is a novelty and as of today, extensive tests are performed on multiple
networks in cities of different sizes.

5.2 Future work

Better understanding of the sensors Although the simulation environment
enabled us to test different models with real-life phenomena, the lack of true
counts to compare on the Orléans’ network use case makes it challenging to
estimate the correct value of the noise hyperparameters p™ and p~ or the fraud
rates at each station. It could be interesting to collect ground truth data for
these sensors by manually counting passengers in vehicles. The value for these
hyperparameters could then be estimated using an Expectation-Maximization
algorithm.

Multi-source Although counting cells is very beneficial to OD matrix recon-
struction, the problem remains highly uncertain. Indeed, many stations lead to
high uncertainty in the resulting OD matrix. Nevertheless, adding other sensors,
such as Bluetooth scanners, could reduce the system’s underdetermination and
increase the reconstruction’s reliability.

Denoising method The actual statistical denoising method proposed in
Subsection [3.1] is incomplete. Indeed, only observed alighting counts are de-
noised with respect to the boarding validations, which requires removing fraud
beforehand. Thereby, denoising both boarding and alighting counts would give
access to the total count of boarding and alighting passengers per station without
needing to remove fraudsters, which is useful notably for occupancy estimation.
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