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Abstract. Markov network (MN) structured output classifiers provide a
transparent and powerful way to model dependencies between output la-
bels. The MN classifiers can be learned using the M3N algorithm, which,
however, is not statistically consistent and requires expensive fully an-
notated examples. We propose an algorithm to learn MN classifiers that
is based on Fisher-consistent adversarial loss minimization. Learning is
transformed into a tractable convex optimization that is amenable to
standard gradient methods. We also extend the algorithm to learn from
examples with missing labels. We show that the extended algorithm re-
mains convex, tractable, and statistically consistent.

1 Introduction

Structured output classification aims at the prediction of a set of statistically
interdependent labels. A transparent way to model dependencies between the
labels provides the Markov Network (MN) classifier, formally defined as follows.
Let X be a set of observations. Let V be a finite set of objects, and let E �

�V
2

�
be a set of interacting objects. An object v P V is characterized by a label y P Yv
of a finite set Yv. Let Y �

�
vPV Yv be the structured output space, and let

y � pyy P Yv | v P Vq P Y denote the labeling of all objects in V. The match
between observation x and a label yv P Y assigned to object v P V is scored by a
function fv : X �Y Ñ R. The match between the labels pyv, yv1q assigned to the
interacting objects tv, v1u P E is scored by a function fvv1 : Y�Y Ñ R. Given an
observation x P X , the MN classifier h : X Ñ Y returns the labeling y P Y with
the maximum total score:

hpxq P Argmax
yPY

� ¸
vPV

fvpx, yvq �
¸

v,v1PE
fvv1pyv, yv1q

�
(1)

Inference (1) requires solving a valued constrained satisfaction problem which
is an NP-hard in general. There are subclasses solvable efficiently; e.g., when
pV, Eq is acyclic, it can be solved by dynamic programming. In a general setup,
the problem can be addressed using linear programming (LP) relaxation [19].

Linearly parameterized score functions can be learned efficiently by Maxi-
mum Margin Markov Network (M3N) algorithms [14, 15, 17] even if the graph
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pV, Eq is generic and the inference is not tractable [5, 4]. The original M3N algo-
rithm requires fully annotated examples; however, an extension for learning from
partially annotated examples, when some labels can be missing, was proposed
in [6]. M3N algorithms translate learning into convex and tractable minimization
of the margin rescaling loss and its variants, which serve as a surrogate of the
target loss we would like to actually optimize. An unsettling issue is the statisti-
cal properties. Namely, algorithms based on margin rescaling loss minimization
are not statistically consistent [10]; that is, they are not guaranteed to learn the
optimal Bayes classifier even if fed in with an unlimited amount of data.

Recently, [2, 3] proposed an adversarial loss whose minimization yields a sta-
tistically consistent algorithm. Unfortunately, the evaluation of the adversarial
loss requires solving a Min-Max problem whose size scales with the number of
labels, and thus it is not tractable for structured prediction. In [12] an algorithm
was proposed that minimizes adversarial loss instantiated for structured predic-
tors. However, the algorithm relies on an oracle that solves a Min-Max problem
of the same complexity as the one in the definition of adversarial loss. Therefore,
the algorithm is applicable only for MN classifiers when the neighborhood graph
pV, Eq is restricted to be acyclic, and even then the oracle is not guaranteed to
solve the problem optimally.

In this paper, we contribute to the problem of learning MN classifiers by:

1. We propose a novel surrogate loss, named MArkov Network Adversarial
(MANA) loss, for learning MN classifiers. The MANA loss is defined by
a convex optimization which is tractable for general neighborhood graph
pV, Eq. In Theorem 3 we prove that the MANA loss is equivalent to the ad-
versarial loss. The MANA loss is, to our knowledge, the first surrogate for
learning generic MN classifiers which is simultaneously statistically consis-
tent, convex and tractable. Minimization of the MANA loss is amenable to
standard gradient methods.

2. We extend the MANA loss for learning MN classifiers on partially annotated
examples when the labels are missing at random. The extended loss, named
partial MANA loss, has the same computational complexity as its supervised
counterpart. In Theorem 5 we prove that the partial MANA loss is Fisher
consistent.

3. We evaluate the algorithms minimizing margin-rescaling loss and the pro-
posed MANA loss using both fully annotated and partially annotated data
sets. We show that the empirical performance of both losses is similar. This
find is not that surprising because we also show that the margin rescaling
loss is a close approximation of the consistent MANA loss, although both
surrogates were developed from completely different principles.

The necessary background and state-of-the-art is given in Section 2. The
contributions of this paper are presented in Section 3. Section 4 provides an
empirical evaluation of the proposed and existing methods, and Section 5 con-
cludes the paper. Proofs of the novel Theorems 3, 4 and 5 are deferred to the
supplementary material.
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2 State-of-the-art

In this section, we describe the state-of-the-art in risk minimization approaches
applicable to learning MN classifiers. We survey existing surrogate losses and
describe which are Fisher-consistent and which are tractable when applied for
learning the MN classifier. Section 2.1 focuses on supervised learning, and Sec-
tion 2.2 on learning from partially annotated examples.

2.1 Supervised learning

Assume that instances px,yq are generated from a distribution pXY px,yq on
X � Y. Let ` : Y � Y Ñ R be a target loss penalizing the predictions of the
labeling. In this paper, we focus on additive losses, that is,

`py, ŷq �
¸
vPV

`vpyv, ŷv1q (2)

where `v : Yv�Yv Ñ R are some single-label losses. The goal is to find a classifier
h : X Ñ Y that minimizes the expected risk 1:

R`ph, pXY q � Ex,y�pXY `py,hpxqq .

At best we achieve the Bayes risk R�
` ppXY q � infh : XÑY R`ph, pXY q. The classi-

fier is usually modeled as a composed function hpxq � T � fpxq, where f : X Ñ
Rd is a score map, and T : Rd Ñ Y is a fixed label decoding. For example,
the most common prediction model, also considered in this paper, assigns la-
bels based on maximization of a score function f : X � Y Ñ R, i.e., hpxq P
ArgmaxyPY fpx,yq. This corresponds to d � |Y| and T pfq P ArgmaxyPY fy
where fpxq � pfpx,yq,y P Yq P R|Y|. The MN classifier (1) is obtained when
fpx,yq decomposes over objects V and edges E , i.e.,

fpx,yq �
¸
vPV

fvpx, yvq �
¸

v,v1PE
fvv1pyv, yv1q . (3)

The finding of the classifier can be posed as a minimization of R`pT � fq
w.r.t. f . However, direct minimization of the `-risk is difficult due to the discrete
nature of the commonly used losses `. Therefore, ` is replaced by a surrogate loss
ψ : Rd � Y Ñ R, which evaluates the score map f on pXY px,yq using a ψ-risk
Rψpf , pXY q � Ex,y�pXY ψpfpxq,yq. The optimal score w.r.t. the ψ-risk is then
fψ P Argminf : XÑRd Rψpf , pXY q. There are two requirements on the surrogate
loss ψ. First, optimization of the surrogate should be tractable, hence, ψpf ,yq is
designed to be convex in f and cheap to evaluate. Second, the resulting classifier
hpxq � T �fψpxq should achieve low `-risk, being our true objective. Ideally, we
require the surrogate ψ to be Fisher consistent [9, 20]:

R�
` ppXY q � R`pT � fψ, pXY q , (4)

1 We refer to the expectation of a loss LOSS as the LOSS-risk.
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i.e., the classifier found by minimizing the ψ-risk achieves the Bayes `-risk.
In the common ML setup, the distribution pXY px,yq is unknown; however,

we have a training sequence TXY � ppxi,yiq P X � Y | i � 1, . . . ,mq drawn
from i.i.d. random variables with distribution pXY px,yq. Training data TXY
are used to approximate pXY px,yq by the empirical distribution p̂mXY px,yq �
1
m

°m
i�1rrx � xi ^ y � yiss, and the classifier is found using the empirical risk

minimization (ERM)
fmψ P Argmin

fPF
Rψpf , p̂

m
XY q , (5)

where F � tf : X Ñ Rdu is an a priori chosen class of functions. Under suit-
able conditions, with an increasing number of examples m, the population ψ-risk
converges in probability to the minimal attainable ψ-risk, i.e., Rψpfmψ , pXY q

p
Ñ

Rψpf
�
ψ, pXY q. In this case, a Fisher-consistent surrogate ψ (i.e., the surrogate

satisfying (4)), which is also continuous and bounded from below, guarantees the
convergence of the `-risk to the Bayes `-risk, i.e.R`pT �fmψ , pXY q

p
Ñ R�

` ppXY q [20].

Structured Output Support Vector Machines [16, 15, 17] (SO-SVM) is
an instance of the ERM, that is designed to learn the linear classifier and the
surrogate is a certain convex piecewise linear function.

Let φ : X �Y Ñ Rn be an input-output feature map that embeds X �Y in a
parameter space Rn. Let fpx,yq � φpxqTθ be the score function parameterized
by θ P Rn. We will use Φpxq � pφpx,yq,y P Yq P Rn�|Y| to denote a matrix
that for a given x P X contains the feature maps of all labelings y P Y. Let
T pfq P ArgmaxyPY fy be the label decoding and fpxq � pfpx,yq,y P Yq P R|Y|

be the score map. The linear classifier can be written in a compact way as

hpxq P Argmax
yPY

φpx,yqTθ � T � fpxq � T �ΦpxqTθ . (6)

In this paper, we concentrate on a linear MN classifier, obtained when the
input-output feature map decomposes over objects V and edges E as

φpx,yq �
¸
vPV

φvpx, yvq �
¸

v,v1PE
φvv1pyv, yv1q , (7)

where φv : X � Yv Ñ Rn, v P V, and φvv1 : Yv � Yv1 Ñ Rn, tv, v1u P E .
Marginal rescaling loss is the most widely used surrogate in structured output

classification [17], and it is defined as

ψmrpf ,yq � max
y1PY

�
`py,y1q � fpx,y1q

�
� fpx,yq . (8)

Given training examples TXY , the SO-SVM algorithm finds parameters θ of
the linear classifier (6) by solving a convex unconstrained problem

θmmr � argmin
θPRn

�
λ

2
}θ}2 �

1

m

m̧

i�1

ψmrpΦpx
iqTθ,yiq

�
, (9)
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where λ ¡ 0 is the regularization constant. The SO-SVM problem (9) corre-
sponds to the ERM (5) with proxy ψmr and a class of linear scores F � tfpxq �
ΦpxqTθ | }θ} ¤ rpλqu, where r : RÑ R is a monotonic function of λ.

There are two issues with the SO-SVM algorithm. First, the margin-rescaling
loss ψmr is not Fisher-consistent, in general. It is Fisher-consistent in the binary
case |Y| � 2, when ψmr becomes the hinge loss of the binary SVM [9]. In the
multiclass case, |Y| ¡ 2, it is Fisher-consistent if only if maxyPY pY |Xpy | xq ¡
0.5, @x P X [10]. Second, evaluating the margin-rescaling loss requires an oracle
solving the loss-augmented prediction

ŷ P Argmax
yPY

�
`pŷ,yq � fpx,yq

�
. (10)

In the case of the MN classifier, (10) is intractable, in general. It is tractable
when the target loss is additive and the neighborhood graph pV, Eq is restricted
to be acyclic, in which case (10) can be solved by dynamic programming. The
intractability of loss-augmented prediction can be resolved by replacing the in-
tractable maximization problem (10) with a linear programming (LP) upper
bound [13, 19], which was done for a generic MN classifier in [4]. The linear
programming margin-rescaling (LP-MR) loss for the MN classifier (1) reads

ψlppf , ŷq � min
αPRnα

� ¸
vPV

max
yPYv

�
fvpx, yq �

¸
v1PN pvq

αvv1pyq � `vpŷv, yq
�

�
¸

tv,v1uPE

max
py,y1qPYv�Yv1

�
fvv1py, y

1q � αvv1pyq � αv1vpy
1q
��

� fpx, ŷq ,
(11)

where α � pαvv1 : Yv � Yv1 Ñ R , αv1v : Yv1 � Yv Ñ R , tv, v1u P Eq is a vec-
tor of nα � 2

°
tv,v1uPEp|Yv| � |Yv1 |q auxiliary variables. Evaluating ψlppf , ŷq

requires solving a convex unconstrained problem, which can be done using gra-
dient methods simultaneously with learning the score function. In contrast to
the original margin-rescaling loss, the optimization of ψlp is tractable for an ar-
bitrary neighborhood graph pV, Eq. In the case of the acyclic graph pV, Eq, the
bound is tight and ψlppf ,yq � ψmrpf ,yq, @f ,y. Therefore, ψlp is not Fisher
consistent in general.

Adversarial loss [2, 3] posed the prediction as an adversarial problem between
the predictor minimizing the risk and an adversarial maximizing the risk with
respect to the posterior distribution that matches the statistics computed on
the examples. They show that adversarial prediction is an example of the risk
minimization approach. In this case, the adversarial surrogate loss is expressed
as a Min-Max problem:

ψadvpf , ŷq � max
qP∆

min
pP∆

Ey�p,y1�q

�
`py,y1q � fpx,yq � fpx, ŷq

�
(12)

where ∆ � tq P R|Y|
� |

°
yPY qpyq � 1u is a probability simplex on Y. The

adversarial loss is Fisher-consistent (Theorem 15 in [3]):
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Theorem 1. Let Radvpf , pXY q � Ex,y�pXY ψadvpfpxq,yq be ψadv-risk given by
the adversarial loss (12), induced from a target loss ` : Y � Y Ñ R satisfy-
ing `py,yq   `py,y1q, @y � y1. Let the set of optimal predictions Ŷpxq �
Argminy1PY Ey�pY |X

`py,y1q be a singleton, |Ŷpxq| � 1, for all inputs x P X .
Then, we have

R�
` ppXY q � R`pT � fadv, pXY q ,

where T pxq P ArgmaxyPY fy and fadv P Argminf : XÑR|Y| Radvpf , pXY q is a
minimizer of the ψadv-risk with respect to all measurable functions.

Nice statistical properties of the adversarial loss are paid off by the computa-
tional issues, i.e., evaluating the loss (12) requires solving the Min-Max problem
with 2|Y| variables, which in case of the structured prediction is intractable. A
generalized Block Coordinate Frank-Wolfe (GBCFW) algorithm to learn struc-
tured output linear classifiers by regularized ERM with the adversarial loss was
recently proposed in [12]. The GBCFW relies on an oracle solving a Min-Max
problem of as similar complexity as (12). [12] propose an alternating procedure
to solve the Min-Max approximately which, however, has no guarantee to reach
a global optimum and, in case of the MN classifier it is tractable only when the
neighbourhood graph pV, Eq is restricted to be acyclic.

2.2 Learning from partially annotated examples

Assume that we do not have access to full labeling y P Y �
�

vPV Yv but instead
we obtain an annotation a P A �

�
vPV Av where Av � tYv Y t?uu. That is,

for an object v P V we either know the true label, av � yv, or the label is
not given, av �?. Given the instance px,yq P X � Y generated from pXY px,yq,
the annotation a P A is generated from pA|XY pa | x,yq. A partially annotated
training set TXA � tpxi,aiq P X � A | i � 1, . . . ,mu contains examples drawn
from i.i.d. random variables with distribution

pXApx,aq �
¸
yPY

pA|XY pa | x,yq pXY px,yq . (13)

The goal is to use TXA to learn a classifier with `-risk R`ph, pXY q close to the
Bayes `-risk R�

` ppXY q. That is, the goals of supervised learning and learning from
partially annotated examples are the same, but the training sets are different.

To apply the risk minimization approach, we need a surrogate loss ψp : Rd�
A Ñ R, whose value ψppf ,aq evaluates the score map f : X Ñ Rd based
on the partial annotation a P A. Let us define the ψp-risk Rψppf , pXAq �
Ex,a�pXAψppfpxq,aq. An optimal score under ψp-risk is obtained by solving

fψp P Argmin
f : XÑRd

Rψppf , pXAq .

As in the supervised case, we require the surrogate ψp to be tractable and Fisher-
consistent:

R�
` ppXY q � R`pT � fψp , pXY q ,

i.e., the classifier found by minimizing the ψp-risk on pXApx,aq, achieves the
Bayes `-risk on pXY px,yq.
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Labels missing at random The distribution pA|XY pa | x,yq governing the
annotation process cannot be arbitrary to make the learning possible. For ex-
ample, when pA|XY pa | x,yq � pApaq, the annotation a is useless as it carries
no information about the labeling y. In this paper, we consider labels Missing
At Random (MAR) annotation process [1, 6] defined by

pA|XY pa | x,yq �
¸

zPt0,1uV

pZ|Xpz | xq
¹
vPV

rrav � cpyv, zvqss , (14)

where cpyv, zvq � yv if zv � 1, cpyv, zvq �? if zv � 0, and pZ|Xpz | xq, x P X , are
conditional distributions on z P t0, 1uV such that pZv |Xpzv | xq ¡ 0, @v P V. The
MAR process implies that the annotation in TXA is generated as follows. Nature
generates px,yq from pXY px,yq. The annotator decides the objects to label based
on the observation of the input x. His decision is stochastic, represented by a
binary vector z P t0, 1uV generated from pZ|Xpz | xq. The annotator reveals the
labels of the objects Vlab � tv P V | zv � 1u, i.e., he sets av � yv, v P Vlab, while
the labels of the remaining objects are not provided, i.e., av �?, v P VzVlab.

Ramp-loss SO-SVM was extended to learn from partially annotated examples
in [11]. The method uses the Ramp loss defined as

ψpramppf ,aq � max
yPY

�
`ppa,yq � fpx,yq

�
�max
yPY

fpx,yq

where `ppa,yq �
°
vPV rrav �?ss`vpav, yvq is the partial additive loss. In case of the

MAR annotation, the ramp-loss is Fisher-consistent [1]. However, the ramp-loss
is non-convex, and in case of the score of the MN-classifier even its evaluation is
not tractable in general. Unlike the margin-rescaling loss, the LP upper bound
is not applicable here.

Partial LP margin-rescaling loss Partial LP margin-rescaling loss for learn-
ing linear MN classifiers from partially annotated examples was proposed in [6].
The loss reads 2

ψplppx,θ,aq � min
αPRnα

� ¸
vPV

max
yPYv

�
φvpx, yq

Tθ �
¸

v1PN pvq

αvv1pyq � `vpŷv, yq
�

�
¸

tv,v1uPE

max
py,y1qPYv�Yv1

�
φvv1py, y

1qTθ � αvv1pyq � αv1vpy
1q
��
� φppx,aqTθ ,

(15)
where φp : X �AÑ Rn is input-annotation feature map defined as

φppx,aq �
¸
vPV

rrav �?ss

pZv |Xp1 | xq
φvpx, yvq �

¸
v,v1PE

rrav �?^ av1 �?ss

pZv,Zv1 |Xp1, 1 | xq
φvv1pyv, yv1q .

(16)
2 To emphasize that ψp

lp is applicable only for the linear MN classifier, we use the
notation ψp

lppx,θ,aq instead of ψp
lppf ,aq with fpxq � Φpxq

Tθ.
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The loss ψplp is obtained from the LP-MR loss (11) by replacing the correct la-
beling score fpx,yq � φpx,yqTθ, which cannot be computed since the complete
labeling y is unknown, by the score φppx,aqTθ which can be computed on the
partial annotation a. The replacement is justified by the fact that the expecta-
tion of the input-output features equals the expectation of the input-annotation
features as stated by the following theorem (Theorem 1 in [6]):

Theorem 2. Let φ : X �Y Ñ Rd be the input-output feature map defined by (7)
and φp : X �AÑ Rd the input-annotation feature map defined by (16). Let both
φ and φp be constructed from the same set of φv : X � Y Ñ Rd, v P V, and
φvv1 : Y � Y Ñ Rd, tv, v1u P E. Let pA|XY pa | x,yq be the MAR annotation
process (14). Then, we have

Ea�pA|X
φppx,aq � Ey�pY |X

φpx,yq , @x P X ,

where pA|Xpa | xq and pY |Xpy | xq are conditional distributions derived from
pXYApx,y,aq � pXY px,yq pA|XY pa | x,yq.

Note that computation of the input-annotation feature map (16) requires the
unary marginals pZv |Xpzv | xq, v P V, and pair-wise marginals pZv,Zv1 |Xpzv, zv1 |
xq, tv, v1u P E , of the distribution pZ|Xpz | xq describing the label missingness.
The marginals can be easily estimated from the partially annotated examples
TXA using the maximum likelihood method [6].

The partial LP-MR loss ψplp is convex, and it can be efficiently optimized by
gradient methods. In the limit case, when no labels are missing, it coincides with
the supervised margin-rescaling loss, and hence, it is not Fisher-consistent.

3 Contributions

3.1 Tractable adversarial loss for the MN classifier

The additive loss (2) and the score fpx,yq of the MN classifier (3), both de-
compose as a sum of functions with arity at most two. We noticed that in this
case the Min-Max problem that defines adversarial loss (12) can be converted to
a linear program whose dual form is tractable. This leads to a novel surrogate
loss, termed the MArkov Network Adversarial (MANA) loss, which is defined as
a tractable convex optimization

ψmanapf , ŷq � min
αPRnα
µPM

� ¸
vPV

max
yPYv

�
fvpx, yq �

¸
v1PN pvq

αvv1pyq �
¸
y1PA

µvpy
1q`vpyv, y

1q
�

�
¸

tv,v1uPE

max
py,y1qPYv�Yv1

�
fvv1py, y

1q � αvv1pyq � αv1vpy
1q
��

� fpx, ŷq ,

(17)
where the vector α � pαvv1 : Yv � Yv1 Ñ R , αv1v : Yv1 � Yv Ñ R , tv, v1u P Eq
has nα � 2

°
tv,v1uPEp|Yv| � |Yv1 |q variables, the vector µ � pµv P ∆v , v P Vq P

M � Rnµ is composed of vectors µv P ∆v, v P V, from the probability simplex
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on Yv and it has nµ �
°
vPV |Yv| variables in total. Note that evaluating the

objective of the minimization problem (17) for fixed pα,µq does not require any
oracle to solve an intractable problem, unlike the algorithm of [12]. The following
theorem, one of the main results of this paper, ensures that the MANA loss (17)
coincides with the Fisher consistent adversarial loss (12).

Theorem 3. Let ` : Y�Y Ñ R be an additive loss (2). Let F � tf : X Ñ R|Y|u
be a set composed of the MN classifier score maps given by (3). Then, we have

ψadvpf ,yq � ψmanapf ,yq , @f P F ,@y P Y .

Comparison with the LP margin-rescaling loss We would like to point
out a striking similarity between the MANA loss (17) and the LP-MR loss (11)
although they were derived from completely different principles. The MANA
loss can be obtained from the LP-MR loss by replacing the ground truth labels
in the maximization terms of (11) by their one-hot encodings, and minimizing
the value of the loss w.r.t those encodings. Or, equivalently, fixing the values
of µvpyq, v P V, in (17) to one-hot encoding of ground truth labels ŷv, v P V,
instead of minimizing them, makes MANA loss equal to the LP-MR loss. This
subtle change makes the inconsistent LP-MR loss to Fisher-consistent MANA
loss without significantly increasing the computational complexity. However, the
LP-MR loss can be seen as a close approximation of the consistent MANA loss
which also provides additional explanation for its good empirically observed
performance.

MANA as unconstrained convex optimization Most frequently, the single-
label losses `v : Yv � Yv Ñ R, v P V, defining the additive loss `py,y1q are
normalized 0/1 losses, e.g., when `py, ŷq � 1

|V|
°
vPV rryv � ŷv1ss is the Hamming

loss. In this case, the MANA loss (17) can be simplified by eliminating the
variables µ as stated in the following theorem.

Theorem 4. Let ` : Y � Y Ñ R be an additive loss (2) composed of `vpy, y1q �
Kvrry � y1ss, v P V, where Kv ¡ 0, v P V, are positive scalars. Then

ψmanapf , ŷq � min
αPRnα

� ¸
vPV

max
S�Yv,|S|¡0

�
1

|S|

¸
yPS

�
fvpx, yq �

¸
v1PN pvq

αvv1pyq
�

�Kv �
Kv

|S|

�
�

¸
tv,v1uPE

max
py,y1qPYv�Yv1

�
fvv1py, y

1q � αvv1pyq � αv1vpy
1q
��

� fpx, ŷq .

(18)

Remark 1. The inner maximization in (18) is of type

max
S�Yv,|S|¡0

�
1

|S|

¸
yPS

gvpx, yq �Kv �
Kv

|S|

�
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and it can be solved in Op|Yv| log |Yv|q time as follows. First, sort the values
gvpx, yq, y P Yv, in non-increasing order into a sequence a1, . . . , a|Yv |. Second,
compute k� P ArgmaxkPt1,...,|Yv |ur

1
k

°k
i�1 ai � Kv �

Kv
k s. Third, construct the

optimal set S from the first k� labels in the sorted order.

Using the MANA loss (18) as a surrogate in the regularized ERM problem (9),
leads to an unconstrained convex optimization with Opm � nα � nq variables.
The optimization problem can be solved efficiently using standard sub-gradient
methods.

3.2 Fisher-consistent surrogate for partially annotated examples

In this section, we extend the MANA for learning the linear MN classifier on
partially annotated examples. In particular, we assume the linear predictor (6)
with the score map fpxq � ΦpxqTθ given by the parameters θ P Rn and the
input-output feature map (7). We further assume that the partial annotations
are generated by the MAR process (14). For this setting, we propose the partial
MANA loss defined as

ψpmanapx,θ,aq � min
αPRnα
µPM

� ¸
vPV

max
yPYv

�
θTφvpx, yq �

¸
v1PN pvq

αvv1pyq �
¸
y1PA

µvpy
1q`vpyv, y

1q
�

�
¸

tv,v1uPE

max
py,y1qPYv�Yv1

�
θTφvv1py, y

1q � αvv1pyq � αv1vpy
1q
��

� θTφppx,aqq

(19)
where φppx,aq is the input-annotation feature map (16). The partial MANA
loss (19) is obtained from the (supervised) MANA loss (17) after substituting
the linear score fpx,yq � θTφpx,yq and replacing the correct labeling score
(the last term in (17)), which cannot be evaluated as the complete labeling y
is unknown, by θTφppx,aq, which can be evaluated on a partial annotation a.
Note that the partial MANA loss has the exact same computational complexity
as the (supervised) MANA loss. In the case of fully annotated examples, it follows
from (16) that φppx,aq � φpx,yq, and hence both losses coincide.

The following theorem, another main contribution of this paper, ensures that
the partial MANA loss is Fisher-consistent.

Theorem 5. Assume the same setup as in Theorem 1. In addition, assume that:

1. The partially annotated examples px,aq P X�A are generated from pXApx,aq �°
yPY pA|XY pa | x,yq pXY px,yq where pA|XY pa | x,yq is a MAR annotation

process (14).
2. The set F � tfpxq � ΦpxqTθ | θ P Θ � Rnu contains score maps of linear

MN classifier (7), and F � Argminf : XÑR|Y| Radvpf , pXY q.

Then, we have
R`�ppXY q � R`pT �ΦpxqTθpmana, pXY q ,

where T pxq P ArgmaxyPY fy and θpmana P ArgminθPΘ R
p
manapθ, pXAq is a mini-

mizer of Rpmanapθ, pXAq � Ex,a�pXAψpmanapx,θ,aq.
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The theorem guarantees that the linear MN classifier hpxq � T �ΦpxqTθpmana

with parameters found minimizing ψpmana-risk on pXApx,aq achieves the Bayes
`-risk on pXY px,yq. The theorem requires the annotations to be generated from
MAR process (14), and that the class of linear scores F is sufficiently rich to
contain a minimizer of the ψadv-risk.

4 Experiments

We evaluate the precision of a linear MN classifier trained by solving the regu-
larized ERM problem (9) with different surrogate losses. In all experiments, we
use the normalized Hamming loss, `py,y1q � 1

|V|
°
vPV rryv � y1vss, as the target

loss plugged into the surrogates. We evaluate the following algorithms:

1. The baseline, referred to as the M3N algorithm, solves (9) with the MR-
LP surrogate (11) when learning from fully annotated examples, and the
partial MR-LP surrogate (15) when learning from the partial annotations.
When pV, Eq is a chain and the examples are fully annotated, the algorithm
becomes the standard Maximum Margin Markov network algorithm [16, 17].
The generalization for an arbitrary graph pV, Eq was proposed in [4]. The
generalization for partially annotated examples comes from [6]. In all cases,
the surrogates are derived from the margin rescaling loss (8), hence we use
the M3N algorithm for all the variants.

2. The proposed algorithm, referred to as MANA algorithm, solves (9) with
the MANA surrogate (18) when learning from fully annotated examples and
partial loss of MANA (19) when learning from partial annotations.

As benchmark problems, in Section 4.1 we consider the prediction of se-
quences generated from the hidden Markov chain, and in Section 4.2 the predic-
tion of the solution of the Sudoku puzzle [6].

Inference The inference of the MN classifier (1) is solved by the dynamic
programming when pV, Eq is a chain. For general pV, Eq, we use the Augmented
Directed Acyclic Graph solver [13, 19].

Optimization Regardless of the surrogate used, ERM (9) leads to convex un-
constrained optimization with the same number of variables. We solve ERM (9)
using ADAM [7] with β1 � 0.9, β2 � 0.999, 5000 passes through all m training
examples, and the learning rate 1

100 t , t P t1, . . . , 5000mu .

Computation of partial losses Partial loss of LP-MR (11) and Partial MANA
loss (19) require knowing the marginals of the distribution pZ|Xpz | xq that gov-
ern the missingness of the labels. Following [6], we assume that the distribution
is homogeneous and the labels are missing completely at random, that is,

pZ|Xpz | xq �
¹
vPV

τ tp1� τqt (20)
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where t �
°
vPV zv and τ P r0, 1s is the probability that a randomly chosen object

v P V is annotated. Under this assumption, marginals can be estimated from the
partially annotated examples TXA using the maximum likelihood approach:

p̂Zv |Xp1 | xq � τ, v P V,
p̂Zv,Zv1 |Xp1, 1 | xq � τ2, tv, v1u P E , where τ �

1

m|V|

m̧

i�1

¸
vPV

rraiv �?ss . (21)

The estimated marginals are used to calculate φppx,aq defined by (16).

Evaluation protocol For each data set, we generate K random divisions of the
examples into training, validation, and testing parts. The training part is used
to learn the parameters θ. The optimal regularization constant λ P t0, 1, 10, 100u
selected based on the minimal Hamming loss evaluated on the validation= part.
We report the mean and standard deviation of the Hamming loss and the 0/1
loss of the model with the optimal λ calculated on the K example divisions.

4.1 Synthetic data: Hidden Markov chain

The input and output are sequences of symbols x � px1, . . . , x100q P t1, . . . , 30u100

and y � py1, . . . , y100q P t1, . . . , 30u100 generated from the hidden Markov chain:

pXY px,yq � ppy1q
100¹
i�2

ppyi | yi�1qppxi | yiq . (22)

The initial state distribution ppy1q is randomly generated, the emission proba-
bility is ppxi | yiq � 7{10 if xi � yi and ppxi | yiq � 3{290 otherwise, and the
transition probability is ppyi | yi�1q � 7{10 if yi � yi�1 and ppyi | yi�1q � 3{290
otherwise. The known model allows us to construct the Bayes classifier, optimal
for the Hamming loss. The Bayes risk estimated from 100,000 examples is 0.2013.

We generate the partial annotation a P pt1, . . . , 30uYt?uq100 using ppa | x,yq
given by (14), and the missingness distribution ppz | xq given by (20). We vary
the probability τ P t0, 0.1, 0.2u to generate the complete annotation and partial
annotations with 10% and 20% labels missing at random. The graph pV, Eq is
a chain. The feature maps ψvpx, yq � 1xv,y, and ψvv1py, y1q � 1y,y1 , are one-
hot encodings of the symbols pxv, yq and py, y1q, respectively. We used K � 5
random divisions of the data. The test set has 10,000 examples, the validation
5000 examples, and the size of the training set was m P t10, 100, 1000u.

The test error of the MN classifier for different sizes of the training set and
different amounts of missing labels is summarized in Table 1. The errors obtained
for the M3N and MANA algorithms are very similar. The M3N performs slightly
better when the number of training examples is small, while the MANA performs
slightly better when the number of training examples is high. Differences become
more pronounced with a greater number of missing labels. The best test risk
0.2050 � 0.0005, obtained with the MANA algorithm on 1,000 fully annotated
examples, is close to the Bayes risk 0.2013 estimated from 100,000 examples and
using the ground truth model (22) to construct the Bayes predictor.
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Table 1. Test error of linear MN classifiers predicting sequences of symbols generated
by hidden Markov chain. The classifiers are trained by M3N and MANA algorithm on
varying number of training examples with varying amount of missing labels.

M3N MANA
Test error Test error

#trn Hamming loss Hamming loss

m
is
si
ng

la
be

ls 0
%

10 0.3500 � 0.0124 0.3764 � 0.0152
100 0.2351 � 0.0007 0.2319 � 0.0016

1000 0.2094 � 0.0008 0.2050 � 0.0005

1
0
%

10 0.3495 � 0.0189 0.3528 � 0.0154
100 0.2441 � 0.0023 0.2420 � 0.0018

1000 0.2117 � 0.0008 0.2065 � 0.0007

2
0
%

10 0.3409 � 0.0200 0.3423 � 0.0177
100 0.2547 � 0.0017 0.2526 � 0.0017

1000 0.2135 � 0.0008 0.2078 � 0.0007

4.2 Sudoku solver

Symbolic inputs The Sudoku is made up of 9�9 cells V � tpi, jq P N | 1 ¤ i ¤
9 , 1 ¤ j ¤ 9u filled with numbers 1 to 9 or kept empty �. The puzzle assignment
is x � pxv P t�, 1, . . . , 9u | v P Vq. The task is to fill the empty cells so that
the rows, columns, and non-overlapping subgrids 3�3 contain all numbers from
1 to 9. The puzzle solution is y � pyv P t1, . . . , 9u | v P Vq. Prior knowledge
is encoded by revealing the algorithm that cells in rows, columns, and 3 � 3
sub-grids are related, that is, by setting E � ttpv, v1q, pu, u1qu | v � v1 _ v1 �
u1 _ prv{3s � ru{3s ^ rv1{3s � ru1{3squ. The feature maps ψvpx, yq � 1xv,y,
and ψvv1py, y1q � 1y,y1 , are one-hot encodings of the pair of symbols pxv, yq and
py, y1q, respectively.

We use a database of Sudoku assignments and their correct solutions to create
a training set. The partial annotation/solution was generated using the MAR
process (14) with pZv|Xp1 | xq � 1 if xv P t1, . . . , 9u and pZv |Xp1 | xq � 1 � τ
if xv � �, where τ P t0, 0.1, 0.2u is the probability that the empty cell is not
annotated. We generate three training sets with a complete solution, with 10%
and 20% of the empty cells left empty, respectively. We varied the number of
training examples m P t10, 100, 1000u. We tested on 100 puzzles; note that it
involves the prediction of 9 � 9 � 100 � 8, 100 labels. In addition to Hamming loss,
we also evaluated the prediction using the 0/1 loss, in which case the test error
corresponds to the portion of puzzles that were not solved perfectly.

The results are summarized in Table 2. The precisions obtained for the M3N
and MANA algorithm are similar. It was enough to use m � 100 training ex-
amples to reach zero test error regardless of the amount of missing labels used.
In the case of m � 10 training examples, the differences are at the level of the
standard deviation for both 0/1 loss and Hamming loss.
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Table 2. Test error of linear MN classifiers predicting solution of Sudoku puzzle from
either symbolic assignment or visual assignment composed of the MNIST digits. The
classifiers are trained by M3N and the proposed MANA algorithm on varying number
of training examples with varying amount of missing labels.

Symbolic Sudoku
M3N MANA

Test error Test error
#trn 0/1-loss [%] Hamming loss 0/1-loss [%] Hamming loss

m
is
si
ng

la
be

ls
0
%

10 0.6�0.9 0.0021�0.0029 0.6�0.5 0.0021�0.0020
100 0.0�0.0 0.0000�0.0000 0.0�0.0 0.0000�0.0000

1
0
% 10 0.6�0.9 0.0018�0.0028 0.4�0.5 0.0013�0.0018

100 0.0�0.0 0.0000�0.0000 0.0�0.0 0.0000�0.0000

2
0
% 10 0.6�0.9 0.0018�0.0028 1.0�1.2 0.0031�0.0038

100 0.0�0.0 0.0000�0.0000 0.0�0.0 0.0000�0.0000
Visual Sudoku

M3N MANA
Test error Test error

#trn 0/1-loss [%] Hamming loss 0/1-loss [%] Hamming loss

m
is
si
ng

la
be

ls
0
%

10 96.2�1.8 0.4407� 0.0070 96.8�1.3 0.4475� 0.0201
100 19.2�4.3 0.0625� 0.0153 20.4�3.9 0.0710� 0.0160

1000 5.8�1.3 0.0149� 0.0035 5.8�0.8 0.0155� 0.0037

1
0
% 10 95.6�2.6 0.4402�0.0155 96.2�2.4 0.4512�0.0106

100 36.2�4.9 0.1254�0.0205 42.6�4.7 0.1467�0.0238
1000 37.2�4.8 0.0928�0.0195 40.6�3.8 0.0952�0.0160

2
0
% 10 97.6�2.5 0.4557�0.0213 98.0�1.9 0.4643� 0.0129

100 46.2�2.3 0.1593�0.0120 50.4�3.4 0.1706� 0.0150
1000 52.4�3.2 0.1260�0.0184 52.8�3.3 0.1261� 0.0180

MNIST digits used as input We replace the input symbols t1, . . . , 9u with
28 � 28 images of handwritten digits from the MNIST data set [8]. The empty
cells are replaced by all-black images. As a feature map of the unary scores,
we use ψvpx, yq � pψ̄1, . . . , ψ̄9q, where ψ̄y1 P R2000, y1 � y, are all-zero vectors,
ψ̄y � pkpxv,µ1q, . . . , kpxv,µ2000qq P R2000 is a vector of RBF kernels kpxv,µiq �
expp�2}xv�µi}

2q evaluated for the image xv of the v-th cell and 2,000 randomly
sampled training images. All other settings are the same as for the symbolic
Sudoku experiment. The results are summarized in Table 2. The M3N algorithm
achieves slightly better results when the number of training examples is small.
For m � 1000, the differences are at the standard deviation level.

Comparison with neural architectures Learning deep NN to solve Sudoku
was considered in [18]. They used both the symbolic and the MNIST digits as
inputs. They trained the SATNet architecture, which is a CNN with a maximum
satisfiability (MAXSAT) solver as the last layer. SATNet can better learn hard
interactions between output variables than canonical neural architectures (Con-
vNet) used as a baseline. They use 9, 000 fully annotated training examples and
1, 000 test examples. Table 3 presents the portion of incorrectly predicted solu-
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tions of the test Sudoku puzzles. For comparison, we include the performance of
linear MN classifiers trained with the M3N and MANA algorithm on 1,000 com-
pletely annotated examples. Although the MN classifier is trained on a smaller
number of examples, it significantly outperforms both neural architectures in
both symbolic and visual Sudoku.

Table 3. Comparison of the MN classifier trained from 1,000 examples, and neural
architectures trained from 9,000 examples on the problem of predicting Sudoku solution
from symbolic and visual assignments composed of MNIST digits.

Test error, 0/1-loss [%]
Method Symbolic Visual

MN classifier - M3N 0.0�0.0 5.8�1.3
MN classifier - MANA 0.0�0.0 5.8�0.8

ConvNet 84.9 99.9
SATNet 1.7 63.8

5 Conclusions

We proposed a novel surrogate loss, the MANA loss, to train MN classifiers.
Minimizing MANA loss leads to tractable convex optimization that is amenable
to standard gradient methods. We prove that the MANA loss is equivalent to
the adversarial loss defined by the Min-Max problem, which is Fisher consistent
but intractable in the context of the structure prediction. To our knowledge, the
proposed MANA loss is the first surrogate for learning MN classifiers with a
generic neighborhood graph that is simultaneously statistically consistent, con-
vex, and tractable. This is not an obvious result because even an evaluation of
a generic MN classifier leads to discrete optimization, which is intractable, in
general.

We also proposed a partial MANA loss applicable to learning linear MN clas-
sifiers on partially annotated examples when the labels are missing at random.
The partial MANA loss has the same computational complexity as its supervised
counterpart, and we prove that the partial MANA loss is also Fisher-consistent.

The experiments show that the empirical performance of the ERM algorithms
minimizing the MANA loss, which is consistent, and the LP margin scaling loss,
which is not consistent, are comparable. The deviations are usually at the level of
the estimation error. The comparable performance is not that surprising, because
we have also shown that the LP margin rescaling loss is a close approximation
of the MANA loss, although both surrogates were originally developed from
completely different principles.

The code and data are available at: https://github.com/xfrancv/manet



16 V. Franc et al.

Acknowledgments

The research was supported by the Czech Science Foundation project GACR
GA19-21198S and OP VVV project CZ.02.1.01z0.0z0.0z16 019z0000765 Research
Center for Informatics.

References

1. Antoniuk, K., Franc, V., Hlaváč, V.: Consistency of structured output learning
with missing labels. In: Asian Conference on Machine Learning (ACML) (2015)

2. Fathony, R., Liu, A., Asif, K., Ziebart, B.: Adversarial multiclass classification: A
risk minimization perspective. In: NIPS (2016)

3. Fathony, R., Asif, K., Liu, A., Bashiri, M.A., Xing, W., Behpour, S., Zhang, X.,
Ziebart, B.D.: Consistent robust adversarial prediction for general multiclass clas-
sification (2018), https://arxiv.org/abs/1812.07526

4. Franc, V., Laskov, P.: Learning maximal margin markov networks via tractable
convex optimization. Control Systems and Computers (2), 25–34 (2011)

5. Franc, V., Savchynskyy, B.: Discriminative learning of max-sum classifiers. Journal
of Machine Learning Research 9(1), 67–104 (2008)

6. Franc, V., Yermakov, A.: Learning maximum margin markov networks from ex-
amples with missing labels. In: Asian Conference on Machine Learning (2021)

7. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Proc. of
International Conference on Learning Representations (ICLR) (2015)

8. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010),
http://yann.lecun.com/exdb/mnist/

9. Lin, Y.: A note on margin-based loss functions in classification. Statistics & Prob-
ability Letters 68(1), 73–82 (2004)

10. Liu, Y.: Fisher consistency of multicategory support vector machines. In: Interna-
tional Conference on Artificial Intelligence and Statistics. pp. 291–298 (2007)

11. Lou, X., Hamprecht, F.A.: Structured learning from partial annotations. In: Inter-
national Conference on Machine Learning (ICML). pp. 1519–1526 (2012)

12. Nowak, A., Bach, F., Rudi, A.: Consistent structured prediction with max-min
margin markov networks. In: International Conference on Machine Learning (2020)

13. Schlesinger, M.: Syntactic analysis of two-dimensional visual signals in noisy con-
ditions. Kibernetika (4), 113–130 (1976), in Russian

14. Taskar, B., Chatalbashev, V., Koller, D.: Learning associative markov networks.
In: International Conference on Machine Learning (ICML) (2004)

15. Taskar, B., Guestrin, C., Koller, D.: Maximum-margin markov networks. In: Proc.
of Neural Information Processing Systems (NIPS) (2004)

16. Taskar, B., Guestrin, C., Koller, D.: Max-margin markov networks. In: NIPS (2003)
17. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods

for structured and interdependent output variables. Journal of Machine Learning
Research 6(50), 1453–1484 (2005)

18. Wang, P., Donti, P., Wilder, B., Kolter, J.: SATnet: Bridging deep learning and
logical reasoning using a differential satisfiability solver. In: ICML (2019)

19. Werner, T.: A linear programming approach to max-sum problem: A review. IEEE
Trans. on Pattern Analysis and Machine Intelligence 29(7), 1165–1179 (2007)

20. Yhang, T.: Statistical analysis of some multi-category large margin classification
methods. Journal of Machine Learning Research 5 (2004)


