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Abstract. In a typical few-shot action classification scenario, a learner
needs to recognize unseen video classes with only few labeled videos. It
is critical to learn effective representations of video samples and distin-
guish their difference when they are sampled from different action classes.
In this work, we propose a novel supervised contrastive learning frame-
work for few-shot video action classification based on spatial-temporal
augmentations over video samples. Specifically, for each meta-training
episode, we first obtain multiple spatial-temporal augmentations for each
video sample, and then define the contrastive loss over the augmented
support samples by extracting positive and negative sample pairs ac-
cording to their class labels. This supervised contrastive loss is further
combined with the few-shot classification loss defined over a similarity
score regression network for end-to-end episodic meta-training. Due to
its high flexibility, the proposed framework can deploy the latest con-
trastive learning approaches for few-shot video action classification. The
extensive experiments on several action classification benchmarks show
that the proposed supervised contrastive learning framework achieves
state-of-the-art performance.

Keywords: Few-shot learning · Contrastive learning · Action classifica-
tion.

1 Introduction

Recently, the metric-based meta-learning paradigm has led to great advances in
few-shot learning (FSL) and become the mainstream [10, 36, 7]. Following such
a paradigm, FSL models are typically trained via two learning stages [21]: (1)
They are first trained on base classes to learn visual representations, acquiring
transferable visual analysis abilities. (2) During the second stage, the models
learn to classify novel classes that are unseen before by using only a few labelled
samples per novel class. Similar to FSL, contrastive learning (CL) [21] is also
deployed to address the labelled data-hungry problem. Specifically, CL is de-
fined as unsupervised or self-supervised learning. The target of CL is to obtain
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Fig. 1: A typical contrastive learning framework for unsupervised image repre-
sentation learning. Specifically, two image views xi and xj are generated from
the same family of image augmentations (xi, xj ∼ Σ). A CNN-based encoder
network f along with the projection head g is applied to represent each sample
effectively. After the network parameters are trained based on a contrastive loss,
the projection head g is put away, and only the encoder network f and repre-
sentations hi/hj are used for downstream tasks.

better visual representations to transfer the learned knowledge to downstream
tasks such as image classification [29, 8]. As illustrated in Figure 1, a classic CL
framework [25, 12, 14, 13] also follows the two learning stages (similar to metric-
based meta-learning): (1) An encoder named f and a predictor named g are first
trained with constructed positive and negative sample pairs; (2) The learned
latent embeddings hi/hj are further adapted to downstream tasks of interest.
Therefore, it is natural and indispensable to combine FSL and CL.

However, for few-shot action classification, the integration of CL and FSL
is extremely challenging because of the complicated video encoding methods.
Specifically, two typical methods are widely used: (1) Extracting frame features
and then aggregating them. For example, combined with long-short term mem-
ory (LSTM), 2D Convolutional Neural Networks (CNNs) are often used for video
encoding [32, 20, 40, 5]); (2) Directly extracting spatial-temporal features using
3D CNNs [38, 30, 39, 9, 18] or their variants. For both video encoding practices,
the high-level semantic contexts among video frames are difficult to be aligned
either spatially or temporally [6, 4].

In this work, we thus propose a novel supervised contrastive learning frame-
work to make a closer integration of CL and FSL for few-shot action classi-
fication. Specifically, we first obtain multiple spatial-temporal augmentations
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from each video sample for each meta-training episode. Further, we define a su-
pervised contrastive loss over the augmented support samples by constructing
positive and negative pairs based on their class labels. Finally, the contrastive
loss is combined with a few-shot classification loss defined over a similarity score
regression network for the end-to-end episodic meta-training. In addition, the
proposed framework can deploy the latest CL methods for few-shot action clas-
sification with high flexibility.

In summary, the major contributions of this paper are three-fold:

(1) We devise a spatial-temporal augmentation method to generate different
augmentations, facilitating CL to learn better video representations.

(2) We propose a novel supervised contrastive learning framework for few-shot
action classification. A similarity score network is shared by both CL and
FSL, resulting in a closer integration of the two paradigms.

(3) Extensive experiments on three benchmarks (i.e., HMDB51 [27], UCF101 [34],
and Something-Something-V2 [22]) show that the proposed supervised con-
trastive learning framework achieves state-of-the-art performance.

2 Related Work

Few-shot learning for action classification. Few-shot learning (FSL)
approaches are often divided into two main categories: (1) The goal of gradient-
based approaches [1, 19, 28, 31] is to achieve rapid learning on a new task with
a limited number of gradient update steps while simultaneously avoiding over-
fitting (which can happen when few labelled samples are used). (2) Metric-based
approaches [6, 4, 2, 42, 21] first extract image/video features and then measure
the distances/similarities between an embedded query sample and embedded
support samples. It is essential to measure the distances in the latent space
to determine the class label of query samples. We examine the simplicity and
adaptability of the metric-based meta-learning framework in this paper. But
note that our proposed video augmentation methods and supervised contrastive
learning strategy are also compatible with other few-shot classification solutions.

Contrastive learning. Contrastive learning (CL) is now a relatively new
paradigm for unsupervised or self-supervised learning for visual representations,
and it has shown some promising results [25, 14, 12, 13, 23, 29, 26, 15, 8]. It is cus-
tomary for CL methods to learn representations by optimizing the degree to
which multiple augmented views of the same data sample agree with one an-
other. This is accomplished by suffering a contrastive loss in the latent embed-
ding space. For example, SimCLR [12] achieves the highest level of agreement
possible between various augmented views of the same data sample by obtaining
representations and employing a contrastive loss while operating in the latent
space. It comes with an improved version called SimCLR v2 [13] that explores
larger-sized ResNet models, boosts the performance of the non-linear network
(multiple-layer perception, MLP), and incorporates the memory mechanism. Mo-
mentum Contrast (MoCo) [25] approach creates a dynamic dictionary using a
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Fig. 2: Architecture of our proposed few-shot action classification framework
boosted by supervised contrastive learning. A set of effective spatial-temporal
augmentation methods are utilized to generate various video clips (views),
which are subsequently fed into the feature extractor (3D CNN) to obtain se-
mantic representation vectors. All these sampled video semantic vectors fri,j
(i ∈ {0, 1, · · · , N − 1}, j ∈ {0, 1, · · · ,K − 1}, r ∈ {0, 1, · · · , U − 1}) from the
support set are exploited to train a similarity measurement network M in a
supervised way with the contrastive learning loss Lcl. Furthermore, fri,j together
with the representation vectors frQ, (r ∈ {0, 1, · · · , U−1}) of the augmented views
of query samples are used to train downstream few-shot classification tasks with
softmax loss Lcls.

queue structure and a moving-averaged encoder. It allows for the construction
of an extensive and consistent dictionary on-the-fly, which enables unsupervised
contrastive learning to take place more easily. In this second version [14], the
authors apply an MLP-based projection head and more kinds of data augmenta-
tion methods to establish strong representations. By performing a stop-gradient
operation on one of the two encoder branches, SimSiam [15] is able to optimize
the degree to which two augmentations of the same image are similar to one
another, which allows it to obtain more meaningful representations even when
none of the relevant factors (negative sample pairs, larger batch sizes, or momen-
tum encoders) are present. In this paper, we also evaluate our proposed few-shot
video action classification framework with the latest/mainstream CL methods,
verifying the flexibility and the independence of our method.
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3 Methodology

3.1 Framework Overview

To increase the effectiveness of representation ability of the video encoder and
measure the similarity score more effectively via contrastive learning, we propose
a unified framework that integrates contrastive learning and few-shot learning
together in Fig. 2. For an N -way K-shot few-shot episode, video augmentations
considering both spatial and temporal dimensions are performed for each video.
Concretely, for the j-th input video (j ∈ {0, 1, · · · ,K − 1}) in the i-th class
(i ∈ {0, 1, · · · , N − 1}) in the support set (i.e., Si,j), we obtain U augmented
views/video clips Cr

i,j (r ∈ {0, 1, · · · , U − 1}). Subsequently, these views with
diversity are then followed by a CNN-based feature extractor so that the la-
tent representations can be learned, and outputting the embedded vectors fri,j .
Similarly, for each query sample, we can also obtain the representations of its
different augmented views, denoted as frQ (r ∈ {0, 1, · · · , U − 1}). Since we have
label information for the support set, on the basis of the class labels, we are able
to generate positive and negative sample pairs for the purpose of engaging in
contrastive learning. That is, two latent vectors belonging to the same class are
considered as a positive pair, while they are negative to each other if they come
from different classes. In the N -way K-shot scenario with U augmentations, we
can generate N ×U × (U − 1) positive pairs and U2×N(N − 1)/2 negative ones
in total (as is illustrated in the dash-lined frame in Fig. 2). Then two branches
are extended with the latent vectors: the contrastive learning branch and the
few-shot classification branch. The positive and negative pairs are used to train
the feature extractor with supervised learning as the input for the contrastive
learning branch.

With the loss function defined as Lcl, contrastive learning aims to facili-
tate the feature extractor to generate more discriminative representations, which
make positive samples close and negative ones far away in the high-dimensional
latent space. As for a few-shot classification scenario, we make use of the mean
representation of the K shots for each class (denoted as a prototype) as the class
center for the nearest-neighbor search. And a similarity measurement neural net-
work M is intended to regress the distances between both query samples and
prototypes, with the classification softmax loss defined as Lcls.

3.2 Supervised Contrastive Learning

For each of the U data augmentation methods, we adopt a combination of tem-
poral and spatial augmentations. The spatial one is the same across all U aug-
mentations, i.e., we perform a random crop in each selected frame (as is shown
in Fig. 3(f)). As for the temporal augmentations, we use U = 5 methods to pro-
vide a diversity of visual representations: uniform sampling, random sampling,
speedup sampling, slow-down sampling, and Gaussian sampling. The augmented
video clips (views) are further exploited to generate positive and negative sample
pairs related to contrastive learning.
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Fig. 3: Demonstration of temporal-spatial view augmentations for an input orig-
inal video with D = 117 frames and sampling T = 32 frames: (a-e) temporal
sampling using uniform, random, speed-up, slow-down, and Gaussian methods,
respectively; (f) random spatial crop for each selected frame.

(1) For uniform sampling, let I(σ) denote the frame index of the selected
σ-th frame (σ ∈ {0, 1, · · · , T −1}, and T is the quantity of selected frames) from
the original input video, which follows the distribution defined as:

I(σ) ∼ U(0, D), (1)

where D represents the total number of the original input video sample, and U
is the uniform distribution.

(2) For random sampling, we directly obtain T frames by independently
sampling T times from the original video without any replacement or sorting.

(3) As for speed-up or slow-down sampling, we are motivated by the
observation that sometimes meaningful behaviors happen at the front/end along
the time dimension in the original video, but which may be ignored by the
uniform/random sampling method. The sampled frame I(σ) in both speedup
and slow-down cases are defined as:

dI(σ)
dσ

= v, I(0) = 0, I(T ) = D, (2)

where v is the sampling velocity which is positive for speedup sampling while
negative for the slow-down case. Note that the initial state I(0) = 0 and I(T ) =
D limits the range of the sampled index. Speedup sampling samples more frames
at the beginning of the input video, and slow-down sampling focus more on
frames at the tail.

(4) Gaussian sampling, with slow-down as its first half part and speedup as
second half, i.e., it samples most intensively at the middle of a given video sample.
Its sampling formulation is the same with Equation (2) but the border state
should be initialized as I(0) = 0, I(T/2) = D/2 for the first half and I(T/2) =
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Algorithm 1 Supervised Contrastive Learning (SCL)

Require: N,K, video feature extractor g, a set of view augmentations T , batch
size B, sampled pair amountM in each batch, similarity measurement network
M

Ensure: contrastive learning loss Lcl

for b ∈ {0, 1, · · · , B − 1} do
for sampled video pairs {(xb,l,x

′
b,l)}

M−1
l=0 do

Draw two augmentation functions t ∼ T , t′ ∼ T ;
Cb,l, C

′
b,l = t(xb,l), t

′(x′b,l); # clip generation
fb,l, f

′
b,l = g(Cb,l), g(C

′
b,l); # representation

if (xb,l,x
′
b,l) are sampled from the same class then

yb,l = 1.0;
else
yb,l = 0.0;

end if
end for

end for
for b ∈ {0, 1, · · · , B − 1}, l ∈ {0, 1, · · · ,M − 1} do
db,l = 1.0−M(fb,l, f

′
b,l); # pairwise distance

end for
Update video clip representation network g and similarity measurement net-
workM by minimizing Lcl.

D/2, I(T ) = D for the second half. Fig. 3(a-e) illustrate five examples with
the same input video sample (D = 117) for the five augmentations, respectively
(T = 32, v = 4).

The supervised contrastive learning (SCL) algorithm is summarized in Al-
gorithm 1, where the similarity measurement networkM is also shared in the
few-shot classification branch, which is used to reflect the distance within each
positive/negative pair (the details ofM are described in Section 3.3). We follow
the contrastive loss function Lcl used in [11, 24, 35, 44, 16], which is defined as:

Lcl = −
1

BM

B−1∑
b=0

M−1∑
l=0

yb,ld
2
b,l + (1− yb,l)max(m− db,l, 0)2, (3)

where M is the total constructed positive and negative pairs with a single mini-
batch, and db,l is the distance between two samples of the l-th pair in the b-th
input episode, and yb,l is the corresponding ground truth label (yb,l = 1 if the
pair consists of two views generated from the same class and yb,l = 1 otherwise).
Note that m is a margin that defines a radius, and the negative pairs affect the
loss only when the distance is within this radius.
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Fig. 4: The schematic illustration of the few-shot action classification process.
For the r-th augmented view in the i-th class, the class prototype fri is obtained
by averaging the latent representations fri,j along the shot dimension j. Together
with each query sample’s augmented view frQ, the prototype-query pairs are fed
into the same similarity measurement networkM which is also used in supervised
contrastive learning (see Figure 2) to obtain the final similarity score vector si,Q.

3.3 Few-Shot Classification

The integration process related to contrastive learning and few-shot learning is
reflected in two aspects: (1) The supervised contrastive learning loss is combined
with the few-shot classification loss during training. (2) There exists a similarity
measurement network M that is shared across the few-shot classification and
the contrastive learning branch to measure the latent distance/similarity between
two given augmented views. To exploit the few shots in the support set, we follow
Prototypical Network [33] and summarize all shots’ latent representations fri,j
(i ∈ {0, 1, · · · , N−1}, j ∈ {0, 1, · · · ,K−1}, r ∈ {0, 1, · · · , U−1}) by computing
their average response:

fri =
1

K

K−1∑
j=0

fri,j . (4)

Fig. 4 illustrates the few-shot action classification network. For all the aug-
mented views for a specific class in the support set, the class prototypes fri
(i ∈ {0, 1, · · · , N − 1}, r ∈ {0, 1, · · · , U − 1}) are only concerned with the query
sample frQ coming from the same augmentation. The similarity measurement
network M is then utilized to predict the similarity score sri,Q between two
input views:

sri,Q =M(fri , f
r
Q). (5)

It is worth mentioning that the similarity score vector si,Q of all views is further
weighted by a linear layer w ∈ R1×U , to obtain the final predicted similarity
score si,Q between the i-th class prototype and the query sample:

si,Q = w · si,Q, (6)

where si,Q = [s0i,Q, s
1
i,Q, · · · , s

U−1
i,Q ]T .
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Finally, a softmax layer maps N similarity scores to a classification distri-
bution vector for each query sample. And the few-shot classification loss Lcls is
defined as:

Lcls = −
1

BQ

B−1∑
b=0

Q−1∑
q=0

N−1∑
i=0

yb,q,i log(ŷb,q,i), (7)

where B is the batch size, yb,q,i is the label of the q-th query from the b-th input
episode, and ŷb,q,i is the corresponding predicted classification probability.

3.4 Total Learning Objective

We incorporate supervised contrastive learning to the few-shot classification task
by adding an auxiliary loss Lcl, i.e., the final weighted loss L is constructed as:

L = Lcls + αLcl, (8)

where α is the balance hyper-parameter.

4 Experiments

4.1 Datasets and Settings

Datasets. In this paper, the proposed supervised contrastive learning frame-
work is evaluated the performance on three different action recognition datasets:
HMDB51 [27], UCF101 [34] and Sth-Sth-V2 [22]. HMDB51 totally contains
6,766 videos distributed in 51 action categories. UCF101 has included 13,320
videos covering 101 different action-based categories. Sth-Sth-V2 includes 220,847
videos with 174 different classes. For UCF101 and Sth-Sth-V2, we follow the same
splits as in OTAM [6], and they are randomly sampling 64 classes for meta train-
ing, 12 classes for meta validation, and 24 classes for meta testing, respectively.
For HMDB51, we randomly select 32/6/13 classes for meta training, validation,
and testing.

Configuration. It is considered the few-shot scenarios with N = 5 and
K = 1, 3, 5. In each episode, we randomly select N categories, each consisting
of K samples as the support set and select another video for each class as the
query sample. We train our model over 2,000 episodes and check that the val-
idation set matches an early stopping criterion for every 128 episodes. We use
Adam optimizer, and the learning rate is set to 0.001. Furthermore, the average
classification accuracies are reported by evaluating 500 and 1000 episodes in the
meta-validation and meta-test split, respectively.

3D Backbones. To better demonstrate the generalizability of the pro-
posed framework, we perform extensive experiments with 5 different video fea-
ture extraction backbones: C3D [38], R(2+1)D [39], P3D [30], I3D [41] and
SlowFast [18]. All backbones are trained with the input size of 224 × 224. The
input clip length for C3D, R(2+1)D, P3D, I3D, and SlowFast are 16, 16, 16,
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Table 1: Comparison to state-of-the-art video action classification ap-
proaches on the HMDB51, UCF101, and Sth-Sth-V2 datasets. All backbones
are trained from scratch. Accuracy (%) are reported on average over 1, 000
episodes. Note that Neg./Pos. pairs ratio is configured as 2.5.

Methods Backbone HMDB51 [27] UCF101 [34] Sth-Sth-V2 [22]
1-shot 3-shot 5-shot 1-shot 3-shot 5-shot 1-shot 3-shot 5-shot

ARN [43] C3D 45.53 53.60 59.82 66.60 78.40 84.48 33.44 38.80 45.74
TARN [3] C3D 66.52 73.30 75.50 85.40 86.72 93.40 38.43 44.54 48.63
ProtoGAN [17] C3D 35.41 49.89 52.90 61.73 75.89 79.70 33.90 40.72 44.68
FAN [37] C3D 69.90 71.48 78.20 77.56 87.62 90.80 37.20 43.32 45.82
OTAM [6] C3D 64.63 79.80 81.90 88.12 91.07 92.10 39.60 47.10 52.30
TAV [4] C3D 71.30 78.42 83.80 87.90 92.30 92.26 39.40 46.60 49.92
Ours (w/o SCL) C3D 70.04 77.62 80.51 86.00 90.60 91.20 34.75 41.75 46.28
Ours (full) C3D 75.78 86.89 89.84 92.19 94.96 95.31 41.42 49.22 53.12

32, and 40 frames, respectively. The global average pooling layer in 3D back-
bones are remained, and the dimensions of the final clip representation vectors
are 4096, 2048, 2048, 2048, and 2304, respectively. All the backbones are trained
from scratch. As for the similarity measurement networkM, it consists of 5 fully
connected layers with 1024, 1024, 512, 512, and 1 neuron.

Contrastive Learning Loss. With contrastive learning enabled, its loss
Lcl contributes to the final loss with α = 1.0. For the 5-way few-shot action
classification scenario, the maximum numbers of generated positive and negative
pairs are 100 and 250, respectively. Different positive and negative ratios can be
achieved via masking the selected pairs. The margin parameterm in Equation (3)
is configured to 0.75 in our work. That is, the distance between two clips of a
negative pair is expected to be larger than it.

4.2 Main Results

Comparison to State-of-the-Art. In this paper, we evaluate our proposed
architecture with supervised contrastive learning against the action classification
methods on HMDB51 [27], UCF101 [34] and Sth-Sth-V2 [22] datasets. Frame-
level feature extraction based on 2D CNN and then aggregating them together
as the video descriptor is used in original OTAM [6]. For a fair comparison, we
change its backbone to C3D to extract feature vectors (each video is split into
16 segments, and each contains 16 frames (clip length)). As for TAV [4], we
also re-implement it and replace its 2D backbone with the C3D model, which is
then combined with the original temporal structure filter (TSF). For ARN [43],
TARN [3], ProtoGAN [17] and FAN [37], we follow the original configurations.
The only difference between them and our re-implementation versions is that
we train all 3D backbones from scratch rather than use pre-trained weights
(such as Kinetics-400) since there inevitably exists a category overlap between
mainstream pre-trained models and our evaluation datasets. In Table 1, we sum-
marizes the classification accuracy over 1/3/5 shot(s):
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Table 2: Comparison with different contrastive learning approaches on
the HMDB51, UCF101, and Sth-Sth-V2 datasets. All contrastive learning meth-
ods adopt the C3D model (trained from scratch) as their backbones (clip length
is 16) to extract video feature vectors. Mean accuracies (%) are reported over
1, 000 episodes. Note that Neg./Pos. pair ratio is configured as 2.5.

Methods HMDB51 [27] UCF101 [34] Sth-Sth-V2 [22]
1-shot 3-shot 5-shot 1-shot 3-shot 5-shot 1-shot 3-shot 5-shot

FSL 70.04 77.62 80.51 86.00 90.60 91.20 34.75 41.75 46.28
FSL+SCL (MoCo [4]) 74.26 78.12 83.22 88.74 91.20 92.51 37.54 44.85 48.96
FSL+SCL (MoCov2 [14] ) 74.88 85.90 88.60 91.19 93.86 94.30 39.40 48.60 52.04
FSL+SCL (SimCLR [12] ) 72.32 81.60 84.10 88.90 91.08 92.48 36.90 45.72 49.28
FSL+SCL (SimCLRv2 [13]) 74.92 85.20 89.28 91.16 93.66 94.37 40.06 48.90 53.00
FSL+SCL (SimSiam [15] ) 74.90 85.41 89.17 91.12 93.73 94.70 41.29 48.34 52.92
FSL+SCL (ours) 75.78 86.89 89.84 92.19 94.96 95.31 41.42 49.22 53.12

(1) With supervised contrastive learning disabled, our proposed few-shot
classification architecture achieves better performance than ARN [43], Proto-
GAN [17] on all three datasets and achieves competitive performance w.r.t.
TARN [3] and FAN [37]. However, it performs weaker than OTAM [6] and
TAV [4] because both OTAM and TAV mine the temporal alignment infor-
mation between query and support samples in the latent space, which benefits
the subsequent distance measurement and classification.

(2) With supervised contrastive learning enabled, we achieve better classifi-
cation accuracy in all cases, surpassing prior methods with a significant margin.
It illustrates that the auxiliary SCL loss can boost the representation ability and
similarity score measurement capacity, resulting in improved final classification
accuracy.

(3) Sth-Sth-V2 is much more difficult than HMDB51 and UCF101, as we can
observe that the classification results on Sth-Sth-V2 are much lower than those
on HMDB51/UCF101 with supervised contrastive learning enabled. Improving
classification results on a complex dataset is much more difficult than on simple
ones. The difficulty of Sth-Sth-V2 can be further explained by the diversity of
samples in each category. For example, the category “putting something onto
something” on Sth-Sth-V2 contains many different types of video clips. Almost
all labels are general descriptions rather than actions with concrete object names
(e.g., not like “putting a cup onto a table”?. The general descriptions increase
the classification difficulty significantly.

Contrastive Learning Framework Evaluation. The proposed few-shot
action classification architecture with supervised contrastive learning is designed
not only for high efficient video representations, but also for pairwise similarity
score regression. Therefore, it can adopt other mainstream contrastive learning
methods. To demonstrate its generalization ability, MoCo [4], MoCov2 [14], Sim-
CLR [12], SimCLRv2 [13] and SimSiam [15] are compared with our supervised
contrastive learning algorithm. The batch size B is 128, and all these models are
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Fig. 5: Model convergence analysis of our proposed supervised contrastive learn-
ing algorithm for a few-shot action classification task. Experiments are performed
in AWS ml.g4dn.16xlarge EC2 instance (64 vCPU and 256G RAM).

Fig. 6: Comparison of different negative/positive pair ratios for contrastive learn-
ing on HMDB51, UCF101, and Sth-Sth-V2 datasets with few-shot action clas-
sification. SlowFast is adopted (the speed ratio α = 8, and the channel ratio
β = 1/8) as the backbone (clip length is 40).

trained up to 400 epochs. Table 2 shows the few-shot action classification results.
As shown in Fig. 5, we show the model convergence curves and training time
cost using our SCL algorithm. Experimental results demonstrate that adding
the supervised contrastive learning branch indeed improves the few-shot action
classification performance. Furthermore, since our proposed SCL algorithm con-
siders an additional similarity networkM, it achieves competitive performance
boosting.

4.3 Further Evaluations

Different Pos./Neg. Pair Ratios. In the experiment, we evaluate the in-
fluence of negative/positive pair ratio in contrastive learning. We configure the
ratio to 0.2, 0.25, 0.4, 0.5, 1.0, 2.0, 2.5, 4.0, 6.0 and Fig. 6 plots the average
accuracy on 1,000 meta-test episodes using the SlowFast backbone as the video
feature extractor. For more details, the speed ratio α is set to 8, and the channel
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Table 3: Comparison of different video representation backbones. The
average classification accuracy (%) with supervised contrastive learning enabled
over 1, 000 episodes are reported. The values in parentheses represent the per-
centage improvements over a baseline model with contrastive learning disabled.
Note that Neg./Pos. pair ratio is configured to 2.5.
Dataset K C3D ([38]) R(2+1)D ([39]) P3D ([30]) I3D ([41]) SlowFast ([18])

HMDB51
1-shot 75.78 (+5.74 ) 76.22 (+4.78 ) 76.84 (+5.40 ) 78.80 (+3.80 ) 78.91 (+2.10 )
3-shot 86.89 (+9.27 ) 85.82 (+6.09 ) 86.30 (+7.60 ) 87.52 (+4.40 ) 87.50 (+3.26 )
5-shot 89.84 (+9.33 ) 90.02 (+8.24 ) 90.40 (+6.29 ) 91.38 (+6.10 ) 91.41 (+5.32 )

UCF101
1-shot 92.19 (+6.19 ) 92.60 (+5.80 ) 93.90 (+6.70 ) 94.60 (+4.65 ) 94.53 (+3.74 )
3-shot 94.96 (+4.36 ) 95.00 (+5.96 ) 96.38 (+5.92 ) 96.88 (+5.46 ) 96.88 (+5.28 )
5-shot 95.31 (+4.11 ) 96.48 (+3.70 ) 97.96 (+4.26 ) 98.50 (+4.80 ) 98.44 (+3.90 )

Sth-Sth-V2
1-shot 41.42 (+6.67 ) 42.69 (+6.10 ) 43.50 (+3.29 ) 43.74 (+2.10 ) 43.75 (+2.80 )
3-shot 49.22 (+7.47 ) 51.00 (+7.32 ) 52.28 (+3.50 ) 52.40 (+2.46 ) 52.34 (+2.45 )
5-shot 53.12 (+6.84 ) 53.18 (+5.43 ) 53.93 (+3.00 ) 54.60 (+2.65 ) 54.78 (+1.58 )

ratio β is 1/8. It is a poor performance of the few-shot action classification when
negative/positive pair ratio is smaller than 0.5 on both HMDB51 and UCF101
datasets. On the Sth-Sth-V2 dataset, our model achieves the best results when
the ratio is configured to 2.5. From Fig. 6, we can also conclude that unlike
SimSiam, our proposed SCL indeed depends on negative samples. One reason is
that: not only the video representations are improved (i.e., more discriminative)
by contrastive learning, but also the distances between video clips that are essen-
tial for few-shot classification are explicitly learned by the contrastive learning
loss.

Influence of Different Backbones. To evaluate the generalisability of
our proposed framework, we further integrate different video feature extraction
backbones. In Table 3, we summarize the few-shot action classification accu-
racies respectively based on C3D [38], R(2+1)D [39], P3D [30], I3D [41] and
SlowFast [18] (the speed ratio α = 8, and the channel ratio β = 1/8) with su-
pervised contrastive learning enabled. The performance improvements are also
given in parentheses compared to a simple model with a single few-shot classi-
fication branch without contrastive learning. It is clear to see that: (1) For all
cases on three different datasets, the proposed framework achieves better results
with the supervised contrastive learning branch enabled, which demonstrates the
effectiveness as well as the potential for generalization of the methodology that
we have developed, i.e., contrastive learning indeed improves the video represen-
tation capacity and benefits the distance measurement for classification. (2) The
performance improvements are less significant for high-capacity video extraction
backbones such as I3D and SlowFast.

Effect of Spatial-Temporal Augmentations. To evaluate the effect of
spatial-temporal augmentation methods, we combine different temporal sam-
pling methods with the spatial random crop. In Table 4, we report the perfor-
mance on HMDB51 with the C3D backbone. We can observe from Table 4 that
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Table 4: Comparison of different combinations of spatial-temporal aug-
mentations on HMDB51 with C3D as the backbone. Few-shot classification
accuracies (%) are reported over 1, 000 episodes. Note that Neg./Pos. pair ratio
is configured to 2.5.

Augmentation Method 1-shot 3-shot 5-shot
Uniform Samp. (US) 75.00 84.28 87.40
Random Samp. (RS) 74.84 84.10 87.26
Speedup Samp. (SS) 70.42 81.28 83.40
Slow-Down Samp. (SDS) 71.30 82.00 83.36
Gaussian Samp. (GS) 72.60 83.90 86.45
US+RS 74.89 85.27 88.31
US+RS+SS 75.18 85.63 88.99
US+RS+SS+SDS 75.34 86.74 89.70
US+RS+SS+SDS+GS 75.78 86.89 89.84

uniform sampling and random sampling can achieve better performance than
speedup, slow-down, or gaussian sampling, which because uniform and random
sampling usually obtain the temporal information across the whole time di-
mension, while for speedup, slow-down, and gaussian sampling, they pay more
attention to the beginning, the end and the middle of the video along the time
dimension, respectively. Furthermore, combining all these sampling methods to-
gether and using learnable weights (attentive) to get the final similarity score
(see Fig. 3) will help us mine the video features better.

5 Conclusions

This paper proposes a general few-shot action classification framework powered
by supervised contrastive learning, where contrastive learning is deployed to im-
prove the representation quality of videos and a similarity score network is shared
by both contrastive learning and few-shot learning to make a closer integration
of the two paradigms. Besides, five spatial-temporal video augmentation meth-
ods are designed for generating various video sample views in the N -way K-shot
few-shot classification scenarios. The significantly improvements achieved by our
proposed framework in few-shot action classification is mainly due to: (1) The
auxiliary supervised contrastive learning loss makes the video representations
more discriminative. (2) The distance measurement between clips is reflected by
the similarity score more precisely thanks to a shared similarity score measure-
ment network in both few-shot classification and contrastive learning branches.
Importantly, our proposed framework shows strong generalization abilities when
different video representation backbones are used. Our proposed framework also
has highly flexibility as it can achieve competitive performance when other main-
stream contrastive learning approaches are integrated.
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