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Abstract. Recent studies show that Graph Neural Networks(GNNs) are
vulnerable and easily fooled by small perturbations, which has raised con-
siderable concerns for adapting GNNs in various safety-critical applica-
tions. In this work, we focus on the emerging but critical attack, namely,
Graph Injection Attack(GIA), in which the adversary poisons the graph
by injecting fake nodes instead of modifying existing structures or node
attributes. Inspired by findings that the adversarial attacks are related
to the increased heterophily on perturbed graphs (the adversary tends
to connect dissimilar nodes), we propose a general defense framework
CHAGNN against GIA through cooperative homophilous augmentation
of graph data and model. Specifically, the model generates pseudo-labels
for unlabeled nodes in each round of training to reduce heterophilous
edges of nodes with distinct labels. The cleaner graph is fed back to
the model, producing more informative pseudo-labels. In such an itera-
tive manner, model robustness is then promisingly enhanced. We present
the theoretical analysis of the effect of homophilous augmentation and
provide the guarantee of the proposal’s validity. Experimental results em-
pirically demonstrate the effectiveness of CHAGNN in comparison with
recent state-of-the-art defense methods on diverse real-world datasets.
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1 Introduction

In recent years, graph neural networks (GNNs) have been successfully ap-
plied in social networks [1], knowledge graphs [2] and recommender systems [3]
due to it’s good performance in analyzing graph data. In spite of the popu-
larity and success of GNNs, they have shown to be vulnerable to adversarial
attacks [4,5,6]. Classification accuracy of GNNs on the target node might be
significantly degraded by imperceptible perturbations, posing certain practical
difficulties. For instance, an attacker can disguise his credit rating in credit pre-
diction by establishing links with others. Financial surveillance enables attackers
to conceal the holding relationship in order to carry out a hostile takeover. Due
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to the widespread use of graph data, it is critical to design a robust GNN model
capable of defending against adversarial attacks.

Existing graph adversarial attacks mainly focus on two aspects [7]. The first
one is the graph modification attack(GMA), which poisons graphs by modify-
ing the edges and features of original nodes. The other attack method, graph
injection attack (GIA), significantly lowers the performance of graph embedding
algorithms on graphs by introducing fake nodes and associated characteristics.
The latter type of attack appears to be more promising. For instance, it is unques-
tionably easier for attackers to establish fake users than to manipulate authentic
data in recommender systems. Promoting attackers’ influence in social media
via registering fake accounts is less likely to be detected than modifying system
data. Given the flexibility and concealment of GIA, it is crucial to develop de-
fense strategies. However, the fact is that there are currently fewer methods to
defend GIA in comparison to GMA. In this paper, we propose a defense method
against GIA.

Defense methods are mainly categorized into two groups [8]. One approach
is to begin with models and then improve their robustness, for example, through
adversarial training [9]. The other seeks to recover the poisoned graph’s original
data. Obviously, the first sort of approach is firmly connected to the model,
which implies that it may not work with new models. By contrast, approaches
based on data modification are disconnected from concrete models, which is the
subject of this paper.

Recent studies [10,17] have shown that adversarial attacks are related to the
increased heterophily on the perturbed graph, which has inspired works about
data cleaning. Existing works [17] rely heavily on the similarity of features,
e.g., utilizing Jaccard similarity or Cosine similarity, to eliminate potentially
dirty data. However, they ignored critical local subgraphs in the graph. More
specifically, existing methods only measure heterophilous anomalies based on de-
scriptive features while ignoring meaningful interactions between nodes, which
leads to biased judgments of heterophily, normal data cleaning, and model per-
formance decline. Additionally, while eliminating heterophily makes empirical
sense, it lacks theoretical support.

In this work, we propose a general defense framework, CHAGNN, to resist
adversarial attacks by cooperative homophilous augmentation. To begin, in or-
der to fully use graph information, we propose using GCN labels rather than
descriptive attributes to determine heterophily. This is because GCNs’ robust
representation capability takes into account both the feature and adjacency of
nodes. However, it is undeniable that the model must guarantee good perfor-
mance to provide credible pseudo-labels. Thus, we further propose a cooperative
homophily enhancement of both the model and the graph. To be more precise,
during each round of training, the model assigns prediction labels to the graph
data in order to find and clean heterophilous regions, while the cleaned data is
supplied back to the model for training in order to get more informative sam-
ples. In this self-enhancing manner, the model’s robustness and performance
are steadily improved. Notably, we theoretically demonstrate the effectiveness of
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homophilous augmentation in resisting adversarial attacks, which has not been
demonstrated in prior research [10,17]. Homophilous augmentation can consid-
erably reduce the risk of graph injection attacks and increase the performance
of the model. The experimental results indicate that after only a few rounds of
cleaning, the model outperforms alternative protection approaches.

The contributions of this paper are summarized as follows:

– We propose a homophily-augmented model to resist graph injection attacks.
The model and data increase the graph homophily in a cooperative manner,
thereby improving model robustness.

– We theoretically prove that the benefit of heterophilous edge removal process
is greater than the penalty of misoperation, which guarantees the effective-
ness of our method.

– Our experiments consistently demonstrate that our method significantly
outperforms over baselines against various GIA methods across different
datasets.

2 Preliminaries

2.1 Graph Convolutional Network

Let G = (V,E) be a graph, where V is the set of N nodes, and E is the set of
edges. These edges can be formalized as a sparse adjacency matrix A ∈ RN×N ,
and the features of nodes can be represented as a matrix X ∈ RN×D, where
D is the feature dimension. Besides, in the semi-supervised node classification
task, nodes can be divided into labeled nodes VL and unlabeled nodes VU .

In the node classification task we focus on, the model fθ is trained based
on G = (A,X) and the labeled nodes VL to predict all unlabeled nodes VU as
correctly as possible. θ is the model’s parameter. The model’s objective function
can be defined as:

max
θ

∑
vi∈VU

I(argmax(fθ(G)i) = yi), (1)

where fθ(G)i ∈ [0, 1]
C , C is the number of categories of nodes.

GCN [25], one of the most widely used models in GNNs, aggregates the struc-
tural information and attribute information of the graph in the message passing
process. Due to GCN’s excellent learning ability and considerable time complex-
ity, it has been applied in various real-world tasks, e.g., traffic prediction and
recommender systems. Therefore, it is important to study improve the robust-
ness of GCN against adversarial attacks. Given G and VL as input, a two-layer
GCN with θ = (W1,W2) implements fθ(G) as

fθ(G) = softmax(Âσ(ÂXW1)W2), (2)

where Â = D̃−1/2(A + I)D̃−1/2 and D̃ is the diagonal matrix of A + I. σ
represents an activation function, e.g., ReLU.
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2.2 Graph Adversarial Attack

The attacker’s goal is to reduce the node classification accuracy of the model
on the target nodes T as much as possible. A poisoning attack on a graph can
be formally defined as

min
G′

max
θ

∑
vi∈T

I(argmax(fθ(G
′)i) = yi), (3)

s.t. G′ = (A′, X′), ‖A′ −A‖+ ‖X′ −X‖ ≤ ∆,

where A′ and X′ are modified adjacency and feature matrix, and the predefined
∆ is used to ensure that the perturbation on the graph is small enough.

The attacker only makes changes in the original graph without introducing
new nodes, which is called graph modification attack (GMA). Inversely, the
attack that does not destroy the original graph but injects new nodes on graphs
is defined as the graph injection attack (GIA). Modifying existing nodes is often
impractical, e.g., manipulating other users in a social network. However, creating
new accounts in social media is feasible and difficult to be detected. Due to the
practicality and concealment of GIA, we focus more on it. The difference between
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Fig. 1: GMA vs GIA

GMA and GIA is shown in Fig.1.
Now, we give GIA’s formal definition. An attacker is limited to inject NI

nodes with well-crafted features into the graph. If the injected nodes are rep-
resented by VI , then the injected adjacency matrix and feature matrix can be
formalized as follows:

A′ =

[
A AOI

AT
OI AI

]
,A ∈ RN×N , AOI ∈ RN×NI , AI ∈ RNI×NI , (4)

X′ =

[
X
XI

]
,X ∈ RN×D, XI ∈ RNI×D, (5)

where AOI is the connections between original nodes and injected nodes.
Following the settings of KDD-CUP 2020, VU and VI are mixed. The defender

does not know which unlabeled nodes belong to VU or VI . Given G′ and VL as
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input, the defender’s goal is to maximize the classification accuracy of the model
on VU .

max
θ

∑
vi∈VU

I(argmax(fθ(G
′)i) = yi). (6)

3 THE PROPOSED FRAMEWORK

Based on the practicability and harm of graph injection attacks, we present
an efficient method to resist it in this section. In section 3.1, we relate heterophily
to adversarial attacks and defense, and reveal the motivation for our method.
Section 3.2 proposes a defensive framework by homophilous augmentation while
leveraging the cooperation of the graph and the model to boost robustness.
Moreover, in section 3.3, we theoretically demonstrate the effectiveness of the
proposed method.

3.1 Heterophily and Attack

Before formally tracing the source of the attack, we give the definition of
heterophily and homophily in the graph. If the labels of nodes at both ends of
a path are the same, we call it a homophilous path. Conversely, a heterophilous
path indicates that the labels of nodes at both ends of it are not the same. Fol-
lowing [20,21], we use the homophily ratio h to quantify the degree of homophily,
which is defined as the fraction of homophilous edges among all the edges in a
graph:

h = |{(u, v) ∈ E|yu = yv}|/|E| (7)
Assume that the nodes in a graph are randomly connected, then for a balanced
class, the expectation for h is 1

C . If the homophily ratio h satisfies h >> 1
C , we

call the graph a homophilous graph. On the other hand, it is a heterophilous
graph if h << 1

C . In this paper, we focus on the homophilous graph due to it’s
ubiquity.

Many research [17,18] shows that extremely destructive attacks tend to in-
crease the heterophily of the homophilous graph. It seems plausible since neigh-
bor relationships in graph networks provide critical insights for GNN predictions.
The attacker cannot destroy these relationships, but can only weaken the con-
nection by connecting heterophilous edges. This empirical finding also inspired
subsequent research work based on data cleaning. We do not have a god-view to
know the label of each node, so GCNJaccard [17] measures heterophily based on
the similarity of features, such as using Jaccard similarity or cosine similarity.
Removing heterophilous paths thereby increases the homophily of the graph.
However, they only measure heterophilous anomalies based on descriptive fea-
tures, ignoring the more critical local subgraphs in the graph. The similarity
is stronger if a node and its neighbors share similar hobbies, but it cannot be
measured based on descriptive features. Therefore, the unreasonable homophily
measures may lead to biased judgments of heterophily and reduce model per-
formance. In addition, these studies are only reasonable assumptions based on
experience, and how to guarantee their validity theoretically is challenging.
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Algorithm 1: Eliminating heterophilous Edges
Input: Poisoned graph G′, modified nodes VM , labeled nodes VL,

pseudo-labels Ŷ , soft-labels fθ(G′), elimination rate q
Output: Cleaned Graph Ĝ′

1 He = ∅
2 for u ∈VM do
3 ŷu ←− pseudo-label of node u; Nu ←− u’s neighbors
4 for v ∈Nu do
5 if (v ∈ VL and yv 6= ŷu) or (v /∈ VL and ŷv 6= ŷu) then
6 He ←− He ∪ {(u, v)}

7 for (u,v) ∈ He do
8 fθ(G

′)u ←− soft label of node u; fθ(G′)v ←− soft label of node v
9 The degree of heterophily of (u, v) is h̄u,v = JS(fθ(G

′)u, fθ(G
′)v)

10 Pick and eliminate q · |He| heterophilous edges according to the sampling
probability vector p, which is calculated by Eq.(9)

11 Output the cleaned graph Ĝ′

3.2 Cooperative homophilous Augmentation

Considering the deficiencies of existing methods discussed in last subsection,
we propose a synergistic homophily augmentation strategy to resist attacks.
As mentioned before, using the similarity of features without graph’s structure
information to represent heterophily is biased. Thus, we propose to increase the
graph’s homophily by pseudo-labels that contain the information of both features
and structure.

In GIA scenarios, fake connections must be the edges of unlabeled nodes.
Therefore, our method focuses on this region of the graph. Due to the gap be-
tween pseudo-labels and labels, using pseudo-labels to discriminate and remove
heterophilous edges may lead to mistakenly eliminating homophilous edges. Be-
sides, pseudo-labels can not quantify the strength of heterophily of edges. For
example, suppose the predictions of nodes u, v, and w are [0.99, 0.01], [0.49, 0.51]
and [0.01, 0.99] respectively. Pseudo-labels will treat edge (u,v) and (u,w) as iden-
tical, which is unreasonable. Compared to pseudo-labels, a node’s soft label can
more specifically reflect the probability that the node belongs to each category.
Therefore, we use the JS divergence of the soft labels of nodes at both ends of
the edge to measure the degree of heterophily of the edge (u,v). Heterophilous
edges with a high degree of heterophily are more likely to be removed.
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h̄u,v =JS (fθ(G
′)u, fθ(G

′)v)

=
1

2

C∑
i=1

fθ(G
′)iu log

2fθ(G
′)iu

fθ(G′)iu + fθ(G′)iv
+

1

2

C∑
i=1

fθ(G
′)iv log

2fθ(G
′)iv

fθ(G′)iu + fθ(G′)iv
,

(8)

where fθ(G′)u is the soft label of node u, fθ(G′)iu denotes the probability that
node u belongs to class i.

The value range of JS divergence is [0, 1]. The value of the JS divergence is
closer to 0 as the two probability distributions are more similar. It means that the
smaller the value, the more likely the edge is a homophilous edge. We normalize
the vector h̄, which stores the degree of heterophily of all the heterogeneous
edges.

pi,j = exp(h̄i,j)/
∑

(u,v)∈He

exp(h̄u,v), (9)

where He is the heterophilous edges set, pi,j is the probability that (i, j) is
sampled to be removed. Then we pick out some heterophilous edges according to
the sampling probability vector p. Edges with a higher degree of heterophily are
more likely to be picked out for removal. The process of eliminating heterophilous
edges is described in Algorithm 1.

However, the result of Algorithm 1 strongly depends on the authenticity of
the pseudo-label. To achieve better performance, we propose to enhance the
homophily of graph via cooperatively cleaning graph and improving model per-
formance. Specifically, the model provides pseudo-labels to clean the data, while
the purified graph guides the model by providing more reliable pseudo-labels.
The model and data thus cooperatively increase classification accuracy.

Next we give the implementation details of CHAGNN. In GIA scenarios,
the poisoned regions are consumingly related to the unlabeled nodes, including
the unlabeled nodes VU in the original graph and injected nodes VI . The nodes
selected to modify their edges are called modified nodes (VM ). In order to accu-
rately remove maliciously injected edges, we simply define VM as VU ∪VI . At the
beginning of our algorithm, we first use poisoned graph to conduct pre-training
process on the model. Then we obtain all nodes’ pseudo-labels and soft labels.
The pseudo-labels and soft labels are input to Algorithm 1 to generate a purified
graph Ĝ. After that, model parameters will be fine-tuned on Ĝ. This process will
dramatically improve classification performance in a few rounds. The details of
our method are shown in Algorithm 2. The algorithm flowchart of CHAGNN is
shown in Fig.2.

We found that AdaEdge [29] also used pseudo-labels in their algorithm, but
our proposal is quite different from it. Unlike AdaEdge, which directly removes
the heterophilous edges based on pseudo labels, we introduce JS divergence to
quantify the degree of heterophily of heterophilous edges before the elimination
process, which greatly reduces the possibility of misoperation. Besides, the sub-
jects of the research are different. AdaEdge focuses on solving the over-smoothing
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Fig. 2: Algorithm Flowchart of CHAGNN

Algorithm 2: CHAGNN
Input: Poisoned graph G′, labeled nodes VL, modified nodes VM ,

elimination rate q, max iterations max_iter
Output: Prediction on test set

1 Pretrain model parameters θ on G′
2 for i=1,...,max_iter do
3 Obtain the pseudo-labels P and soft-labels fθ(G′) of all nodes
4 G′ ←− Algorithm1(G′, VM , VL, P, fθ(G

′), q)
5 Fine-tune θ on G′

6 Output the prediction on test set

problem, and they perform a cleanup operation on the entire graph. Instead, we
consider the scenario of graph injection attacks, applying heterophilous edge re-
moval to potentially injected edges in the graph and providing the corresponding
theoretical guarantee. The experimental comparison results of the two algorithms
are shown in section 4.2 and 4.3.

3.3 Theoretical Guarantee

In general, removing heterophilous edges benefits model, while homophilous
edges deletion brings model penalties. We want to mitigate the damage of the
graph data by heterophilous edges as much as possible. However, identifying and
eliminating heterophilous edges via nodes’ pseudo-labels may mistakenly delete
homophilous edges. In this section, we prove that given an arbitrary model ac-
curacy, the expected benefits of the proposed strategy outweigh the expected
penalties. Specifically, we firstly use the variation of loss to represent the impact
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of eliminating heterophilous(homophilous) edges. Then we analyze the probabil-
ity of deleting homophilous edge by mistake with model’s accuracy. Combining
these two parts, we guarantee the reliability of CHAGNN theoretically. We give
the proof of theorems in appendix.

To simplify the proof, we employ the SGC model which removes the activa-
tion function compared with GCN model. Given G = (A,X) and YL as input,
a two-layer SGC with θ = W implements fθ(G) as

fθ(G) = softmax(Â2XW ). (10)

Following [10]’s setting, we assume that G is a d-regular graph which means
that each node of G has d connections with other nodes. For each node of G,
proportion h of their neighbors belong to the same class, while proportion 1−h

C−1
of them belong to any other class uniformly. The features of node v are defined
as xv = p · onehot(yv) + 1−p

C , where yv means the node’s label.
We use the change of CM loss of the model to analyze the influence of in-

jecting nodes to the graph. The CM loss of node v is defined as:

Z = Â2XW , lossv = Zvyv −max
j 6=yv

Zvj . (11)

Define the CM loss of node v on clean graph as L0. After we generate nodes to
inject homophilous edges to the graph, the CM loss changes to L1. Correspond-
ingly, the CM loss is called L2 after we generate nodes to inject heterophilous
edges to the graph. Assume that the proportion of node v’s edges which is con-
nected to class yv before poisoned is h0(including self-loop of node v), and the
proportion of other classes is h1. After we inject nodes to the graph, the propor-
tion of node v’s edges which is connected to class yv is r0, and the proportion
of other classes is r1. For convenience, we separate the proportions of injected
edges from r0 or r1. The proportion of injected edges is denoted as r2.

Theorem 1. Consider target attack and direct attack which means that the in-
ject nodes are directly connected to the target node v. Then we have:

L1 − L0

L0 − L2
=

(r0 − r1 + r2)− (h0 − h1)

(h0 − h1)− (r0 − r1 − r2)
(12)

Remark 1. heterophilous edges elimination is actually the reverse process of at-
tack. According to Theorem 1, we can estimate the ratio between the penalty of
deleting a homophilous edge and the benefit of deleting a heterophilous edge.

Based on the relation between the penalty and benefit stated in Theorem 1,
we analyze the expected benefit and expected penalty of the edge deletion opera-
tion at the specified model accuracy. For simplicity, we focus on judging whether
a node belongs to a specific class in theorem 2, which is a binary classification
problem. Referring to [32], it is easily extensible and applicable to multi-class
scenarios.

Assume that the prediction accuracy of model on unlabeled nodes is p. The
prediction accuracy of different nodes is independent. Suppose we judge that
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there is a heterogeneous edge between nodes u and v according to pseudo-labels
and then we delete euv. The probability that euv is actually a homogeneous edge
is p1 while the probability that euv is actually a heterogeneous edge is p2. The
pseudo-labels of u and v are ŷu and ŷv, ŷu 6= ŷv. The labels of u and v are yu
and yv. Then we have:

Theorem 2. The ratio of expected penalty to expected benefit for eliminating an
edge in CHAGNN is related to the prediction accuracy p.

e1
e2

< 2p(1− p) < 1 (13)

Remark 2. Theorem 2 shows that the expected benefit is always greater than
the expected penalty in our algorithm. For a binary classification problem, an
effective classifier should have an accuracy greater than 50%. This means that
we can reduce the ratio in Theorem 2 by continuously improving the accuracy
of an effective classifier.

4 Experiment

In this section, we compare the proposed CHAGNN with state-of-the-art
defense strategies. The experiment primarily validates our algorithm’s excellent
performance by answering the following research questions:

– RQ1.How well does CHAGNN perform compared to other state-of-the-art
defense methods under different graph injection attacks?

– RQ2.How well does CHAGNN perform with different injected nodes ratio
under the state-of-the-art GIA methods?

– RQ3.How much does the deletion rate affect the performance of CHAGNN?

4.1 Experimental setup

Dataset We evaluate the proposed algorithms with four widely used citation
network datasets, including Cora-ml, Cora [22,23], Citeseer [24], and Pubmed.
The statistics of datasets are summarized in Table 1. Following [12], we only
consider the largest connected component (LCC) of each graph data.

To evaluate the effectiveness of our method, we compared it with the state-
of-the-art defense models. The compared algorithms and attack methods are
introduced in the next two subsections.

Compared Algorithms

– GCN [25]: We compare our algorithm with other methods with GCN, one
of the most widely used models in GNNs.

– GCNSVD [16]: GCNSVD is a preprocessing method to resist adversarial
attacks. It use a low-rank approximation of the graph to train GCN.
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Table 1: Statistics of benchmark datasets
NLCC ELCC Classes Features

Cora-ml 2810 7981 7 2879
Cora 2485 5069 7 1433

Citeseer 2110 3668 6 3703
Pubmed 19717 44338 3 500

– GCN-Jaccard [17]: Another preprocessing method to resist adversarial at-
tacks. They identity and eliminate heterophilous edges with nodes’ features.

– GNNGUARD [19]: GNNGUARD added the attention mechanism to defend
against adversarial attacks. It learns how to best assign higher weights to
edges connecting similar nodes while pruning edges between unrelated nodes.

– ORH [10]: ORH mitigates the damage to the graph structure on account of
the addition of heterophilouss edges by increasing the node’s weight.

– VPN [31]: VPN replaces the graph convolutional operatorA with the weighted
sum of adjacency matrices with different powers.

– AdaEdge [29]: AdaEdge uses pseudo-labels to remove heterophilous edges to
solve model’s over-smoothing problem. Unlike our method, AdaEgde does
not consider actual attack scenarios. Moreover, the judged heterophilous
edges are directly removed without screening, which can easily lead to the
mistaken deletion of homophilous edges.

Attack Methods

– TDGIA [7]: TDGIA first introduces the topological defective edge selection
strategy to choose the original nodes for connecting with the injected ones.
It then designs the smooth feature optimization objective to generate the
features for the injected nodes.

– FGA [26]: A framework to generate adversarial networks based on the gra-
dient information in GCN.

– MGA [27]: This paper proposes a Momentum Gradient Attack (MGA) against
the GCN model, which can achieve more aggressive attacks with fewer
rewiring links than FGA.

FGA and MGA are not directly applicable in GIA scenario. We modify them to
work for GIA setting. They are performed on the graph poisoned by a heuristic
injection.

Parameter Settings For each dataset, we randomly split the nodes into la-
beled nodes for training procedure(10%), labeled nodes for validation(10%) , and
unlabeled nodes as test set to evaluate the model(80%). The hyper-parameters
of all the models are tuned based on the loss and accuracy on validation set. We
report the average performance of 5 runs for each experiment. To avoid excessive
cleaning of the graph, we fixed the elimination rate in each iteration at 10% and
the maximum number of iterations at 5.
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4.2 Defense Performance Against Non-targeted Adversarial Attacks

We compare the performance of different methods at 10% injected nodes
rate on four datasets. The results are shown in Table ??. We highlight the best
performance in bold. From the table, we have the following observations and
discussions.

– CHAGNN significantly outperforms all compared algorithms on most set-
tings, indicating that the validity of targeted design towards GIA and coop-
erative homophilous augmentation.

– The performance of FGA and MGA is not significant compared to TDGIA.
It makes sense because TDGIA was designed specifically for GIA scenarios,
whereas FGA and MGA were originally designed for GMA. When resisting
weak attacks, such as FGA and MGA, the defense performance of several
compared models is poor or even worse than the vanilla GCN. We think it is
due to the fact that the graph considered by the defense algorithm is severely
damaged. However, when dealing with less poisoned or clean graphs, the per-
formance of most defense algorithms may decrease. For instance, GCNSVD
uses low-rank representation of the graph, leading to the loss of information
carried in the original graph structure. The performance of GCNSVD on
the original graph will be worse than the vanilla GCN. We can also see this
phenomenon in [18]’s experiment.

– The performance of ORH and VPN fluctuates greatly. We think it is because
the performance of both algorithms depends on the choice of hyperparam-
eters. Specifically, the performance of ORH depends on the weight of the
node’s own information and neighbors’ information in the message passing
process. The performance of VPN depends on the weights of different pow-
ered graphs.

4.3 Defense Performance Under Different Injected Nodes Ratio

We compare the performance of different algorithms under different injected
nodes ratio. We choose TDGIA, the attack method with the best results in
our experiment, to evaluate the performance of defense methods under differ-
ent injected nodes ratios. The results are reported in Fig.3. Observations and
discussions are listed as follows.

– Our method is effective against more powerful attacks. Even with a high
injected nodes ratio, our approach can significantly improve model’s per-
formance. Vanilla GCN shows poor performance under 20% injected nodes
ratio. Our method can improve it by 27%, 12%, 13% and 10% on the four
datasets respectively.

– TDGIA shows better performance as the injected nodes ratio increases.
Under different injected nodes ratios, our method outperforms others in
most cases, exhibiting excellent defensive performance. It illustrates that
heterophilous edges elimination can indeed enhance the robustness of the
model against adversarial attacks.
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– The performance of AdaEdge is better than GCNJaccard, which illustrates
the effectiveness of using nodes’ pseudo-labels to discriminate heterophily is
more effective than using nodes’ features. The performance of AdaEdge is
second only to CHAGNN on multiple datasets. It shows that the process
of screening the discriminated heterophilous edges can effectively reduce the
possibility of homophilous edges being mistakenly removed, which brings
stronger defense performance in CHAGNN.

4.4 Parameter Sensitivity on Eliminating Rate

In this part, we conduct sensitivity analysis with respect to the eliminating
rate. We only report the results for the Cora-ml dataset at 20% and 2% injected
nodes rates, since the results for other datasets share similar trends. The per-
formance of node classification with different eliminating rates under TDGIA is
shown in Fig.4. We fixed the maximum number of iterations at 10. The following
are some observations.

– The classification performance improves overall as the number of iterations
increases. Our method has a certain defensive effect on most eliminating
rates.

– It is not true that the higher the eliminating rate, the better our method
performs. An excessive eliminating rate on a graph with few injected nodes
can cause our method to perform poorly. This is because in a graph with few
injected nodes, it is very easy to remove homophilous edges by mistake. In
the future, we will devise some efficient methods to find the most appropriate
eliminating rate.

5 Related Work

5.1 Adversarial Attacks on GNNs

Nettack [11] stated that adding unnoticeable perturbations to the graph can
fool GCN into incorrectly predicting. They generated perturbations to lead GCN
to misclassify the target node while preserving the features’ co-occurrences and
the graph’s degree distribution. Metattack [12] is proposed to reduce the overall
performance of the model based on meta-learning. Most attacks are based on
modifying nodes in the original graph. A more realistic scenario, graph injection
attack (GIA), is studied in [14,13], which injects new vicious nodes instead of
modifying the original graph. A greedy algorithm [15] is proposed to generate
edges of malicious nodes and their corresponding features aiming to minimize the
classification accuracy on the target nodes. NIPA [13] modeled the critical steps
of graph injection attack based on reinforcement learning strategy. TDGIA [7]
presented an analysis on the topological vulnerability of GNNs under GIA set-
ting and proposed the topological defective graph injection attack (TDGIA) for
effective injection attacks.
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Fig. 3: Node classification performance under different injected nodes ratio on Cora-ml,
Cora, Citeseer and Pubmed

5.2 Defenses on GNNs

GCNSVD [16] found that Nettack has a greater impact on the high-rank
part of the network. Then they proposed to use a low-rank approximation of the
graph to train GCN by Singular Value Decomposition(SVD). GCNJaccard [17]
stated that the attacks tend to connect the target node to nodes with different
features. They removed the edges connecting the nodes that share few similarities
to the target node by jaccard similarity. Pro-GNN [18] explored both properties
mentioned before and designed a general framework to jointly learn a structural
graph and a robust graph neural network model guided by these properties.
GNNGUARD [19] detected and quantified the relationship between the graph
structure and node features and then exploited that relationship to mitigate neg-
ative effects of the adversarial attacks. In addition to the defense methods against
graph adversarial attacks , some methods based on data augmentation can also
mitigate the influence of the model on graph adversarial attacks. VPN [31] de-
signed the robust GCN via graph powering. They proposed a new convolution
operator that is provably robust in the spectral domain. They incorporated it
in the GCN architecture to improve model’s expressivity and interpretability.
AdaEdge [29] optimizes the graph topology based on the model predictions for
relieving the over-smoothing issue. They simply remove the heterophilous edges
without considering the effect of mistakenly removing the homophilous edges in
this process. And the method does not consider the scenario of graph adversarial
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Fig. 4: Node classification performance under different eliminating rates

attacks. GAUG [30] used GAE to help improve GCN’s robustness.The model’s
effectiveness at defending graph adversarial attacks depends on GAE’s perfor-
mance. However, all the defense methods mentioned are designed for GMA. As
there are currently few methods to defend GIA, this paper defines this problem,
which may provide critical insights for future research.

6 Conclusion

A more realistic scenario, graph injection attack (GIA), demonstrated ef-
fective attack performance on GNNs. However, there were few specific defense
methods against GIA, a scenario that is easier for attackers to implement. In
this paper, we formalized the anti-GIA defense scenario and designed the cor-
responding algorithm. Our experiments showed that our method significantly
outperforms state-of-the-art baselines and improves the overall robustness un-
der various GIA methods. Theoretically, the proposed strategy could work in
various graph adversarial attacks. However, in the more practical GIA scenario,
we can strictly guarantee the effectiveness from empirical and theoretical aspects.
In the future, we plan to apply this strategy to more attack scenarios.
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