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Abstract. There is a rapid increase in the cooperative learning paradigm
in online learning settings, i.e., federated learning (FL). Unlike most FL
settings, there are many situations where the agents are competitive.
Each agent would like to learn from others, but the part of the informa-
tion it shares for others to learn from could be sensitive; thus, it desires
its privacy. This work investigates a group of agents working concurrently
to solve similar combinatorial bandit problems while maintaining qual-
ity constraints. Can these agents collectively learn while keeping their
sensitive information confidential by employing differential privacy? We
observe that communicating can reduce the regret. However, differen-
tial privacy techniques for protecting sensitive information makes the
data noisy and may deteriorate than help to improve regret. Hence, we
note that it is essential to decide when to communicate and what shared
data to learn to strike a functional balance between regret and privacy.
For such a federated combinatorial MAB setting, we propose a Privacy-
preserving Federated Combinatorial Bandit algorithm, P-FCB. We illus-
trate the efficacy of P-FCB through simulations. We further show that our
algorithm provides an improvement in terms of regret while upholding
quality threshold and meaningful privacy guarantees.

Keywords: Combinatorial Multi-armed Bandits - Differential Privacy -
Federated Learning.

1 Introduction

A large portion of the manufacturing industry follows the Original Equipment
Manufacturer (OEM) model. In this model, companies (or aggregators) that
design the product usually procure components required from an available set of
OEMs. Foundries like TSMC, UMC, and GlobalFoundries handle the production
of components used in a wide range of smart electronic offerings [1]. We also
observe a similar trend in the automotive industry [2].

However, aggregators are required to maintain minimum quality assurance
for their products while maximizing their revenue. Hence, they must judicially
procure the components with desirable quality and cost from the OEMs. For this,
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aggregators should learn the quality of components provided by an OEM. OEM
businesses often have numerous agents engaged in procuring the same or similar
components. In such a setting, one can employ online learning where multiple
aggregators, referred henceforth as agents, cooperate to learn the qualities [8, 24].
Further, decentralized (or federated) learning is gaining traction for large-scale
applications [20, 33].

In general, an agent needs to procure and utilize the components from dif-
ferent OEMs (referred to as producers) to learn their quality. This learning is
similar to the exploration and exploitation problem, popularly known as Multi-
armed Bandit (MAB) [13,15]. It needs sequential interactions between sets of
producers and the learning agent. Further, we associate qualities, costs, and ca-
pacities with the producers for each agent. We model this as a combinatorial
multi-armed bandit (CMAB) [5] problem with assured qualities [15]. Our model
allows the agents to maximize their revenues by communicating their history of
procurements to have better estimations of the qualities. Since the agents can
benefit from sharing their past quality realizations, we consider them engaged
in a federated learning process. Federated MAB often improves performance in
terms of regret incurred per agent [16,25] .

Such a federated exploration/exploitation paradigm is not just limited to
selecting OEMs. It is useful in many other domains such as stocking ware-
house/distribution centres, flow optimization, and product recommendations on
e-commerce websites [21,27]. However, agents are competitive; thus, engaging
in federated learning is not straightforward. Agents may not be willing to share
their private experiences since that could negatively benefit them. For example,
sharing the exact procurement quantities of components specific to certain prod-
ucts can reveal the market/sales projections. Thus, we desire (or many times
even it is necessary) to maintain privacy when engaged in federated learning.
This paper aims to design a privacy-preserving algorithm for federated CMAB
with quality assurances.

Our Approach and Contributions. Privacy concerns for sensitive infor-
mation pose a significant barrier to adopting federated learning. To preserve
the privacy of such information, we employ the strong notion of differential
privacy (DP) [9]. Note that naive approaches (e.g., Laplace or Gaussian Noise
Mechanisms [10]) to achieve DP for CMAB may come at a high privacy cost or
outright perform worse than non-federated solutions. Consequently, the primary
challenge is carefully designing methods to achieve DP that provide meaningful
privacy guarantees while performing significantly better than its non-federated
counterpart.

To this end, we introduce P-FCB, a Privacy-preserving Federated Combinatorial
Bandit algorithm. P-FCB comprises a novel communication algorithm among
agents, while each agent is learning the qualities of the producers to cooperate
in the learning process. Crucially in P-FCB, the agent only communicates within
a specific time frame — since it is not beneficial to communicate in (i) earlier

! Regret is the deviation of utility gained while engaging in learning from the utility
gained if the mean qualities were known.
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rounds (estimates have high error probability) or (ii) later rounds (value added
by communicating is minimal). While communicating in each round reduces per
agent regret, it results in a high privacy loss. P-FCB strikes an effective balance
between learning and privacy loss by limiting the number of rounds in which
agents communicate. Moreover, to ensure the privacy of the shared informa-
tion, the agents add calibrated noise to sanitize the information a priori. P-FCB
also uses error bounds generated for UCB exploration [3]| to determine if shared
information is worth learning. We show that P-FCB allows the agents to min-
imize their regrets while ensuring strong privacy guarantees through extensive
simulations.

In recent times, research has focused on the intersection of MAB and DP [19,
32]. Unlike P-FCB, these works have limitations to single-arm selections. To the
best of our knowledge, this paper is the first to simultaneously study federated
CMAB with assured quality and privacy constraints. In addition, as opposed to
other DP and MAB approaches [8,12], we consider the sensitivity of attributes
specific to a producer-agent set rather than the sensitivity of general observa-
tions. In summary, our contributions in this work are as follows:

1. We provide a theoretical analysis of improvement in terms of regret in a
non-private homogeneous federated CMAB setting (Theorem 1, Section 4).

2. We show that employing privacy techniques naively is not helpful and has
information leak concerns (Claim 1, Section 5.2).

3. We introduce P-FCB to employ privacy techniques practically (Algorithm 1).
P-FCB includes selecting the information that needs to be perturbed and
defining communication rounds to provide strong privacy guarantees. The
communicated information is learned selectively by using error bounds around
current estimates. Selective communication helps minimize regret.

4. P-FCB’s improvement in per agent regret even in a private setting compared
to individual learning is empirically validated through extensive simulations
(Section 6).

2 Related Work

Multi-armed bandits (MAB) and their variants are a well studied class of prob-
lems [3,6,15,17,22,23] that tackle the exploration vs. exploitation trade-off in
online learning settings. While the classical MAB problem [3, 28] assumes single
arm pull with stochastic reward generation, our work deals with combinato-
rial bandits (CMAB) [5,11,26,31], whereby the learning agent pulls a subset
of arms. We remark that our single-agent (non-federated) MAB formulation is
closely related to the MAB setting considered in [7], but the authors there do
not consider federated learning.

Federated MAB. Many existing studies address the MAB problem in a fed-
erated setting but restrict themselves to single-arm pulls. The authors in [24,
25] consider a federated extension of the stochastic single player MAB problem,
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while Huang et al. [14] considers the linear contextual bandit in a federated set-
ting. Kim et al. [16] specifically considers the federated CMAB setting. However,
none of these works address privacy.

Privacy-preserving MAB. The authors in [19, 32] consider a differentially pri-
vate MAB setting for a single learning agent, while the works in [4, 18] consider
differentially private federated MAB setting. However, these works focus only on
the classical MAB setting, emphasising the communication bottlenecks. There
also exists works that deal with private and federated setting for the contextual
bandit problem [8,12]. However, they do not consider pulling subsets of arms.
Further, Hannun et al. [12] consider privacy over the context, while Dubey and
Pentland [8] consider privacy over context and rewards. Contrarily, this paper
considers privacy over the procurement strategy used.

To the best of our knowledge, we are the first to propose a solution for
combinatorial bandits (CMAB) in a federated setting with the associated privacy
concerns.

3 Preliminaries

In this section, we formally describe the combinatorial multi-armed bandit set-
ting and its federated extension. We also define differential privacy in our context.

3.1 Federated Combinatorial Multi Armed Bandits

We consider a combinatorial MAB (CMAB) setting where there are [m] pro-
ducers and [n] agents. Each producer i € [m] has a cost k;; and capacity c¢;; for
every agent j € [n]. At any round ¢t € {1,2,...,T}, agents procure some quantity
of goods from a subset of producers under given constraint(s). We denote the
procurement of an agent j by s; = (l1;,l2j,...,lm;) where [;; € [0, k;;] is the
quantity procured from producer i.

Qualities. Each agent observes a quality realisation for each unit it procured
from producers. Since the quality of a single unit of good may not be easily
identifiable, we characterize it as a Bernoulli random variable. The expected
realisation of a unit procured from a producer ¢ is referred to as its quality,
qi- In other words, g; denotes the probability with which a procured unit of
good from producer ¢ will have a quality realisation of one. While the producer’s
cost and capacity vary across agents, the quality values are indifferent based on
agents.

Regret. We use r;; to denote expected utility gain for the agent j by procuring
a single unit from producer ¢, where r;; = pg; — ¢;; (where p > 0, is a propor-
tionality constant). Further, the expected revenue for a procurement vector s;,
is given by rg, = Zig[m] Lijrij.

The goal for the agent is to maximise its revenue, under given constraints.
We consider a constraint of maintaining a minimum expected quality threshold
a (quality constraint), for our setting. To measure the performance of an a given
algorithm A, we use the notion of regret which signifies the deviation of the
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algorithm from the procurement set chosen by an Oracle when mean qualities
are known. For any round ¢t € {1,2,...,T}, we use the following to denote the
regret for agent j given an algorithm A,

o . . ,
Rih _ {’I“Sj* =TSt if s; satisfies the quality constraint

L, otherwise

where s; denotes the procurement set chosen by an Oracle, with the mean
qualities known. s, is the set chosen by the algorithm A in round ¢. L =
maxy, (rsj* —rg) is a constant that represents the maximum regret one can acquire.
The overall regret for algorithm A is given by R4 =Y jcln] Ete[T] Rf4j.

Federated Regret Ratio (FRR). We introduce FRR to help quantify the reduc-
tion in regret brought on by engaging in federated learning. FRR is the ratio of
the regret incurred by an agent via a federated learning algorithm A over agent’s
learning individually via a non-federated algorithm NF', i.e., FRR = RR—& We
believe, FRR is a comprehensive indicator of the utility gained by engaging in
federated learning, compared to direct regret, since it presents a normalised value
and performance comparison over different data sets/algorithms is possible.

Observe that, FRR =~ 1 indicates that there is not much change in terms
of regret by engaging in federated learning. If FRR > 1, it is detrimental to
engage in federated learning, whereas if FRR < 1, it indicates a reduction in
regret. When FFRR = 0, there is almost complete reduction of regret in federated
learning.

In our setting, we consider that agents communicate with each other to im-
prove their regret. But in general, agents often engage in a competitive setting,
and revealing true procurement values can negatively impact them. For instance,
knowing that a company has been procuring less than their history can reveal
their strategic plans, devalue their market capital, hinder negotiations etc. We
give a formalisation of the notion of privacy used in our setting in the next
subsection.

3.2 Differential Privacy (DP)

As opposed to typical federated models, we assume that the agents in our setting
may be competing. Thus, agents will prefer the preservation of their sensitive
information. Specifically, consider the history of procurement quantities H;; =
(lf-j)tem for any producer i € [m] is private to agent j. To preserve the privacy of
H,; while having meaningful utilitarian gains, we use the concept of Differential
Privacy (DP). We tweak the standard DP definition in [9, 10] for our setting. For
this, let S; = (sé)tE[T] be complete history of procurement vectors for agent j.

Definition 1 (Differential Privacy). In a federated setting withn > 2 agents,
a combinatorial MAB algorithm A = (A;)7_, is said to be (¢, d,n)—differentially
private if for any u,v € [n],s.t.,u # v, any t,, any set of adjacent histories
H,, = (lﬁu)te[T],H;u = (L)t qty YU Lo for producer i and any complete
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Fig.1: Overview of the communication model for P-FCB: Agents interact with
producers as part of the exploration and exploitation process. Agents also com-
municate among themselves to learn the qualities of producers. However, they
share noisy data to maintain the privacy of their sensitive information.

history of procurement vector S,
Pr(A,(H;,) €8S,) < e Pr(A,(H,,) €S,) + 6

Our concept of DP in a federated CMAB formalizes the idea that the selection
of procurement vectors by an agent is insusceptible to any single element lfj from
another agent’s procurement history. Note that the agents are not insusceptible
to their own histories here.

Typically, the “e" parameter is referred to as the privacy budget. The privacy
loss variable L is often useful for the analysis of DP. More formally, given a
randomised mechanism M(-) and for any output o, the privacy loss variable is
defined as,

PrIM(H) =0
Lo ma =1 (Fr[[M((H)) - ]> (1)

Gaussian Noise Mechanism [10]. To ensure DP, often standard techniques of
adding noise to values to be communicated are used. The Gaussian Noise mech-
anism is a popular mechanism for the same. Formally, a randomised mechanism

M (z) satisfies (¢, §)-DP if the agent communicates M(z) £ z+A (O, W).

Here, z is the private value to be communicated with sensitivity A(x), and
N(0,0%) the Gaussian distribution with mean zero and variance o2.

In summary, Figure 1 provides an overview of the model considered. Recall
that we aim to design a differentially private algorithm for federated CMAB

with assured qualities. Before this, we first highlight the improvement in regret

o]
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Fig.2: Comparing F'RR values for Homogeneous and Heterogeneous Federated
CMAB (n = 10, m = 30)

using the federated learning paradigm. Next, we discuss our private algorithm,
P-FCB, in Section 5.

4 Non-private Federated Combinatorial Multi-armed
Bandits

We now demonstrate the advantage of federated learning in CMAB by highlight-
ing the reduction in regret incurred compared to agents learning individually.
We first categorize Federated CMAB into the following two settings: (i) ho-
mogeneous: where the capacities and costs for producers are the same across
agents, and (ii) heterogeneous: where the producer’s capacity and cost varies
across agents.

Homogeneous Setting. The core idea for single-agent learning in CMAB
involves using standard UC' B exploration [3]. We consider an Oracle that uses the
UC' B estimates to return an optimal selection subset. In this paper, we propose
that to accelerate the learning process and for getting tighter error bound for
quality estimations, the agents communicate their observations with each other
in every round. In a homogeneous setting, this allows all agents to train a shared
model locally without a central planner since the Oracle algorithm is considered
deterministic. We present the formal algorithm in the extended version [29]. It’s
important to note that in such a setting, each agent has the same procurement
history and the same expected regret.

Further, the quality constraint guarantees for the federated case follow triv-
ially from the single agent case ([7, Theorem 2]). Additionally, in Theorem 1,
we prove that the upper bound for regret incurred by each agent is O(IH(ZT))
a significant improvement over O(InT') regret the agent will incur when playing
individually. The formal proof is provided in the extended version [29].

)
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Theorem 1. For Federated CMAB in a homogeneous setting with n agents,
if the qualities of producers satisfy y-seperatedness, then the individual regret
incurred by each of the agents is bounded by O(@)

Heterogeneous Setting. In real-world, the agents may not always have
the same capacities. For such a heterogeneous setting, the regret analysis is
analytically challenging. For instance, we can no longer directly use Hoeffding’s
inequality, needed for proving Theorem 1, since the procurement histories will
differ across agents. Still, the intuition for regret reduction from cooperative
learning carries over.

Even in a heterogeneous setting, communicating the observations allows the
agent to converge their quality estimations to the mean faster and provide tighter
error bounds. Even with shared quality estimates, Oracle may return different
procurement vectors for different agents based on different capacities. Thus, a
weighted update in estimation is essential, and the procurement vector would
also need to be communicated.

We empirically demonstrate that using federated learning in heterogeneous
setting shows similar FRR (ratio of regret incurred in federated setting com-
pared to non federated setting) trend compared to homogeneous setting, over
100000 rounds for two scenarios: (i) Costs and qualities are sampled from uniform
distributions, i.e. ¢;; ~ U0, 1], ¢; ~ U|0, 1], (ii) Costs and qualities are sampled
from normal distributions around the quality threshold, i.e., ¢;; ~ N(«,0.1),
qi ~ N(a,0.1).

Fig. 2 depicts the results. From Fig. 2 we observe that the trend for both
homogeneous and heterogeneous settings are quite similar. This shows that,
similar to the homogeneous setting, employing federated learning reduces regret
even in the heterogeneous setting.

5 P-FCB: Privacy-preserving Federated Combinatorial
Bandit

From Section 3.2, recall that we identify the procurement history of an agent-
producer pair as the agent’s sensitive information. We believe that the notion
of DP w.r.t. the agent-producer procurement history is reasonable. A differen-
tially private solution ensures that the probability with which other agents can
distinguish between an agent’s adjacent procurement histories is upper bounded
by the privacy budget e.

Section Qutline: In this section, we first argue that naive approaches for DP
are not suitable due to their lack of meaningful privacy guarantees. Second, we
show that all attributes dependent on the sensitive attribute must be sanitised
before sharing to preserve privacy. Third, we define a privacy budget algorithm
scheme. Fourth, we formally introduce P-FCB including a selective learning pro-
cedure. Last, we provide the (¢, §)-DP guarantees for P-FCB.
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5.1 Privacy budget and Regret Trade-off

Additive noise mechanism (e.g., Gaussian Noise mechanism [10]) is a popular
technique for ensuring (¢, )-DP. To protect the privacy of an agent’s procure-
ment history within the DP framework, we can build a naive algorithm for
heterogeneous federated CMAB setting by adding noise to the elements of the
procurement vectors being communicated in each round.

However, such a naive approach does not suitably satisfy our privacy needs.
Using the Basic Composition theorem [10], which adds the es and ds across
queries, it is intuitive to see that communicating in every round results in a high
overall e value which may not render much privacy protection in practice [30].
Consider the agents interacting with the producers for 10° rounds. Let ¢ = 1072
for each round they communicate the perturbed values. Using Basic Composi-
tion, we can see that the overall privacy budget will be bounded by ¢ = 10%,
which is practically not acceptable. The privacy loss in terms of overall € grows
at worst linearly with the number of rounds.

It is also infeasible to solve this problem merely by adding more noise (re-
ducing € per round) since if the communicated values are too noisy, they can
negatively affect the estimates. This will result in the overall regret increasing to
a degree that it may be better to not cooperatively learn. To overcome this chal-
lenge, we propose to decrease the number of rounds in which agents communicate
information.

Secondly, if the sample size for the local estimates is too small, noise addition
can negatively effect the regret incurred. On the other hand, if the sample size
of local estimate is too large, the local estimate will have tight error bounds and
deviating from the local estimate too much may result in the same.

When to Learn. Based on the above observations, we propose the following
techniques to strike an effective trade-off between the privacy budget and regret.

1. To limit the growth of € over rounds, we propose that communication hap-
pens only when the current round number is equal to a certain threshold
(denoted by 7) which doubles in each communication round. Thus, there are
only log(T") communications rounds, where density of communication rounds
decrease over rounds.

2. We propose to communicate only for a specific interval of rounds, i.e., for
each round ¢ € [t,¢]. No communication occurs outside these rounds. This
ensures that agent communication only happens in rounds when it is useful
and not detrimental.

5.2 Additional Information Leak with Actual Quality Estimates
and Noisy Weights

It is also important to carefully evaluate the way data is communicated every
round since it may lead to privacy leaks. For example, consider that all agents
communicate their local estimates of the producer qualities and perturbation
of the total number of units procured from each producer to arrive at the esti-
mation. We now formally analyse the additional information leak in this case.
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Procedure 1 CheckandUpdate(W,w,Y, 3, w1, ws, n,t)

1:Lf<—%

2 if L ¢ {q —wyy/ 2R g4 31;5;“)} then
3: W +— W + wow

4: Y +— Y 4wy

5: end if

6: return WY

W.l.o.g. our analysis is for any arbitrarily picked producer i € [m]| and agent
J € [n]. As such, we omit the subscripts “i" for producer and “;" for the agent.
We first set up the required notations as follows.

Notations: Consider ¢, Wt as true values for the empirical estimate of quality
and total quantity procured till the round ¢ (not including t). Next, let W denote
noisy value of W (with the noise added using any additive noise mechanism for
DP [10]). We have w! as the quantity procured in round ¢. Last, let §°***¢ denote

the quality estimate based on just round ¢. Through these notations, we can
1 _ WthAterthAobsvt
=T Witwt -

compute §*1! for the successive round t + 1 as follows: ¢**
Claim 1 Given ¢', W', W' w' and §°""t, the privacy loss variable L is not
defined if G is also not perturbed.

We present the formal proof in the extended version [29]. With Claim 1, we
show that ¢ may not be bounded even after sanitising the sensitive data due to
its dependence on other non-private communicated data. This is due to the fact
that the local mean estimates are a function of the procurement vectors and
the observation vectors. Thus, it becomes insufficient to just perturb the quality
estimates.

We propose that whenever communication happens, only procurement and
observation values based on rounds since last communication are shared. Addi-
tionally, to communicate weighted quality estimates, we use the Gaussian Noise
mechanism to add noise to both the procurement values and realisation values.
The sensitivity (A) for noise sampling is equal to the capacity of the producer-
agent pair.

5.3 Privacy Budget Allocation

Since the estimates are more sensitive to noise addition when the sample size
is smaller, we propose using monotonically decreasing privacy budget for noise
generation. Formally, let total privacy budget be denoted by € with (e!,€2,...)
corresponding to privacy budgets for communication rounds (1,2, ...). Then, we
have e} > €2 > .... Specifically, we denote €* as the privacy budget in the z*?

. . z € €
communication round, where €* <— TXlog(T) T 2577
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Algorithm 1 P-FCB

1:

w

10:
11:
12:
13:

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

24:

25:
26:
27:
28:
29:
30:

31:
32:
33:
34:
35:
36:
37:

Inputs : Total rounds T, Quality threshold «, €, 6, Cost set {c;} =
{(ci,j)icim) }» Capacity set {k;} = {(ki;)iem]}, Start round ¢, Stop round ¢
/* Initialisation Step */

t+— 0, 7+— 1

Vi € [m],¥j € [n]] Initialise total and uncommunicated procurement
(Wi j,w; ;) and realisations (Y; ;, y; ;)

while ¢ < %’C’QT) (Pure Explore Phase) do

for all the agents j € [n] do
Pick procurement vector s§ = (1)™ and observe quality realisations
t
ng pE
[Vi € [m]] Update Wijl,wf;l,)/fjl,yﬁl using Eq. 2
if ¢t€[t,t] and t > 7 then > Communication round
[Vi € [m]] Calculate w; ;, yi ; according to Eq. 3,4
for each agent z € [n]/j do
Send {w; ;, ¥ ;} to agent z
Vi € m]] Wiy +—  CheckandUp-

date(Wit,erlﬁ Wy, 5, Yifjlv Yij» )
end for
Vi € [m]) wf' 0, g
T—2XT
end if
Update quality estimate
t+—1t+1
end for
end while
while ¢ < T, Vj € [n] (Explore-Exploit Phase) do
[Vi € [m]] Calculate the upper confidence bound of quality estimate,
()"
Pick procurement vector using s = Oracle((¢; ;)*,c;,k;,.) and observe

its realisations X;,/_ i

[Vi € [m]] Update Wt wt*1, Y2+ 441 using Bq 2
if ¢€|tt] and ¢ > 7 then > Communication round
Vi € [m]] Calculate w; ;,y; ; according to Eq. 3,4
o Y
for each agent z € [n]/j do
Send {w; j,¥; ;} to agent z
[Vi € [m]] witt vt — CheckandUp-

- -1

+—0

date(Wiijlv
end for
Vi € [ml] wl' 0, /3
T—2XT
end if
Update quality estimate
t«—t+1
end while

~ t+1 ~
Wi 3, YT i)

«—0
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5.4 P-FCB: Algorithm

Based on the feedback from the analysis made in previous subsections, we now
present a private federated CMAB algorithm for the heterogeneous setting,
namely P-FCB. Algorithm 1 formally presents P-FCB. Details follow.

Algorithm 1 Outline. The rounds are split into two phases. During the
initial pure exploration phase (Lines 6-22), the agents explore all the producers
by procuring evenly from all of them. The length of the pure exploration phase
is carried over from the non-private algorithm. In this second phase (Lines 23-
38), explore-exploit, the agents calculate the UCB for their quality estimates.
Then the Oracle is used to provide a procurement vector based on the cost,
capacity, UCB values as well as the quality constraint («). Additionally, the
agents communicate their estimates as outlined in Sections 5.1 and 5.2. The
agents update their quality estimates at the end of each round using procurement
and observation values (both local and communicated), Lines 19 and 36.

t+1 t t . t+1 t t
Wiy s w s WigT = Wi+
t+1 t t . t+1 t t
Yij S Yijtaij; Y =Y+ @)
YtJrl
11 ij
qivj Wt+1

]

Noise Addition. From Section 5.2, we perturb both uncommunicated pro-
curement and realization values for each agent-producer pair using the Gaussian
Noise mechanism. Formally, let wf’j,yij be the uncommunicated procurement
and realization values. Then ; j,y; ; are communicated, which are calculated

using the following privatizer,

2k ;1og(1.25/9)
(€2)?

2k ;1og(1.25/9)
(€2)?

Wi, = w; ; + N(0, (3)

Uig = vi; + N0, ) (4)

where €* is the privacy budget corresponding to the z** communication
round.

What to Learn. To minimise the regret incurred, we propose that the
agents selectively choose what communications to learn from. Weighted confi-
dence bounds around local estimates are used to determine if a communication

only selects to learn from a communication if ¢; ; — wi&} ; < q(communicated)i.j <

qut,j + wlfl{j where w; is a weight factor and q(communicated)i,j = 33”1 .
The local observations are weighed more compared to communicated obser-
vations for calculating overall estimates. Specifically, wa € [0, 1] is taken as the

weighing factor for communicated observations.

,J
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Fig. 3: EXP1: Regret Comparison across rounds (n = 10, m = 30)

5.5 P-FCB: (¢,0)-DP Guarantees

In each round, we perturb the values being communicated by adding Gaussian
noises satisfying (€¢/,§’)-DP to them. It is a standard practice for providing DP
guarantees for group sum queries. Let M be a randomised mechanism which
outputs the sum of values for a database input d using Gaussian noise addition.
Since Oracle is deterministic, each communication round can be considered a
post-processing of M whereby subset of procurement history is the the database
input. Thus making individual communication rounds satisfy (¢’,’)-DP.

The distinct subset of procurement histories used in each communication
round can be considered as independent DP mechanisms. Using the Basic Com-
position theorem, we can compute the overall (¢, §)-DP guarantee. In P-FCB, we
use a target privacy budget, €, to determine the noise parameter ¢ in each round
based on Basic composition. Thus, this can be leveraged as a tuning parameter
for privacy/regret optimisation.

6 Experimental Results

In this section, we compare P-FCB with non-federated and non-private approaches
for the combinatorial bandit (CMAB) setting with constraints. We first explain
the experimental setup, then note our observations and analyze the results ob-
tained.

6.1 Setup

For our setting, we generate costs and qualities for the producers from: (a)
uniform distributions, i.e., ¢;, ¢;; ~ U[0, 1] (b) normal distributions, i.e., ¢;,¢;j ~
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Fig.5: EXP3: Average regret per agent with P-FCB by varying the number of
learners n (with e = 1, t = 100000)

N (e, 0). For both cases, the capacities are sampled from a uniform distribution,
kij ~ U[1,50]. We use the following tuning parameters in our experiments:
a = 04,0 =0.01 (ie., § < 1/n), t = 200, t = 40000, w; = 0.1, wy = 10. For
our Oracle, we deploy the Greedy SSA algorithm presented in Deva et al. [7].
Further, to compare P-FCB’s performance, we construct the following two non-
private baselines:

1. Non-Federated. We use the single agent algorithm for subset selection under
constraints proposed in Deva et al. [7]. It follows UCB exploration similar
to P-FCB but omits any communication done with other agents.
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2. FCB. This is the non-private variant of P-FCB. That is, instead of communi-

cating w;; and g;;, the true values wf; and yj; are communicated.

We perform the following experiments to measure P-FCB’s performance:

e EXP1: For fixed n = 10, m = 30, we observe the regret growth over rounds
(t) and compare it to non-federated and non-private federated settings.

e EXP2: For fixed n = 10, m = 30, we observe FRR (ratio of regret incurred
in federated setting compared to non federated setting) at ¢ = 100000 while
varying € to see the regret variance w.r.t. privacy budget.

e EXP3: For fixed € = 1, m = 30, we observe average regret at ¢ = 100000 for
varying n to study the effect of number of communicating agents.

For EXP1 and EXP2, we generate 5 instances by sampling costs and quality
from both Uniform and Normal distributions. Each instance is simulated 20 times
and we report the corresponding average values across all instances. Likewise for
EXP3, instances with same producer quality values are considered with costs and
capacities defined for different numbers of learners. For each instance, we average
across 20 simulations.

6.2 Results

e EXP1. P-FCB shows significant improvement in terms of regret (Fig. 3) at
the cost of relatively low privacy budget. Compared to FCB, P-FCB (¢ = 1)
and Non-federated incurs 136%,233% more regret respectively for uniform
sampling and 235%, 394% more regret respectively for normal sampling.
This validates efficacy of P-FCB.

e EXP2. We study the performance of the algorithm with respect to privacy
budget (Fig. 4). We observe that according to our expectations, the regret
decreases as privacy budget is increased. This decrease in regret is sub-linear
in terms of increasing e values. This is because as privacy budget increases,
the amount of noise in communicated data decreases.

e EXP3. We see (Fig. 5) an approximately linear decrease in per agent regret
as the number of learning agents increases. This reinforces the notion of
reduction of regret, suggested in Section 4, by engaging in federated learning
is valid in a heterogeneous private setting.

Discussion: Our experiments demonstrate that P-FCB, through selective learn-
ing in a federated setting, is able to achieve a fair regret and privacy trade-off.
P-FCB achieves reduction in regret (compared to non-federated setting) for low
privacy budgets.

With regards to hyperparamters, note that lower ws suggests tighter bounds
while selecting what to learn, implying a higher confidence in usefulness of the
communicated data. Thus, larger values for w; can be used if wy is decreased.
In general, our results indicate that it is optimal to maintain the value wy - wo
used in our experiments. Also, the communication start time, should be such



16 Solanki et al.

that the sampled noise is at-least a magnitude smaller than the accumulated
uncommunicated data (e.g., ¢ = 200). This is done to ensure that the noisy data
is not detrimental to the learning process.

The DP-ML literature suggests a privacy budget ¢ < 1 [30]. From Fig. 4,
we note that P-FCB performs well within this privacy budget. While our results
achieve a fair regret and privacy trade-off, in future, one can further fine tune
these hyperparameters through additional experimentation and/or theoretical
analysis.

7 Conclusion and Future Work

This paper focuses on learning agents which interact with the same set of produc-
ers (“arms") and engage in federated learning while maintaining privacy regard-
ing their procurement strategies. We first looked at a non-private setting where
different producers’ costs and capacities were the same across all agents and
provided theoretical guarantees over optimisation due to federated learning. We
then show that extending this to a heterogeneous private setting is non-trivial,
and there could be potential information leaks. We propose P-FCB which uses
UCB based exploration while communicating estimates perturbed using Gaus-
sian method to ensure differential privacy. We defined a communication protocol
and a selection learning process using error bounds. This provided a meaning-
ful balance between regret and privacy budget. We empirically showed notable
improvement in regret compared to individual learning, even for considerably
small privacy budgets.

Looking at problems where agents do not share exact sets of producers but
rather have overlapping subsets of available producers would be an interesting
direction to explore. It is also possible to extend our work by providing theoretical
upper bounds for regret in a differentially private setting. In general, we believe
that the idea of when to learn and when not to learn from others in federated
settings should lead to many interesting works.
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