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Abstract. Trajectory-User Linking (TUL), which aims to link the tra-
jectories to the users who have generated them, is critically important
to many real applications. Existing approaches generally consider TUL
as a supervised learning problem which requires a large number of la-
beled trajectory-user pairs. However, in real scenarios users may not be
willing to make their identities publicly available due to data privacy
concerns, leading to the scarcity of labeled trajectory-user pairs. In ad-
dition, the trajectory data are usually sparse as users will not always
check-in when they go to POIs. To address these issues, in this paper
we propose a multi-task adversarial learning model named TULMAL for
semi-supervised TUL with spare trajectory data. Specifically, TULMAL
first conducts sparse trajectory completion through a proposed seq2seq
model. Kalman filter is also coupled into the decoder of the seq2seq
model to calibrate the generated new locations. The completed trajecto-
ries are next input into a generative adversarial learning model for semi-
supervised TUL. The insight is that we consider all the users and their
trajectories as a whole and perform TUL in the data distribution level.
We first project users and trajectories into the common latent feature
space through learning a projection function (generator) to minimize the
distance between the user distribution and the trajectory distribution.
Then each unlabeled trajectory will be linked to the user who is closest
to it in the latent feature space without much guidance of labels. The two
tasks are jointly conducted and optimized under a multi-task learning
framework. Extensive experimental results on two real-world trajectory
datasets demonstrate the superiority of our proposal by comparison with
existing approaches.

Keywords: Trajectory completion · Trajectory-user linking · Adversar-
ial learning · Multi-task learning.
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1 Introduction

With the rapid development of satellite positioning technology and location-
based services, many location-related mobile data such as human trajectory data
and taxi OD data are ubiquitous nowadays. The large volume of human mobility
data can facilitate us to have a better understanding on human behavior patterns
and provide great opportunities for various trajectory mining tasks [11, 13, 33].
For example, the user mobility data collected from location-based social net-
works (LBSNs) such as Foursquare, can be used for POI recommendation [5,17],
trajectory classification [2, 4], traffic prediction [20–24, 29] and human mobility
prediction [6, 9, 14].

In many online applications, users usually are not willing to make their per-
sonal identity information associated with their trajectories publicly available
due to privacy concerns. In such a case the platforms can only collect the tra-
jectory data, but the users who have generated them are unknown. Linking the
trajectories to the users who have generated them, which is also called Trajec-
tory User Linking (TUL), is fundamentally important to many tasks such as
personalized POI recommendation and terrorists/criminal identification [7].

Existing works generally model TUL as a supervised learning task, which
use RNN-based methods to learn a projection function between trajectories and
users based on a large number of labeled trajectory-user pairs. TULER [7] is the
first model proposed to address the TUL problem, which uses RNN to model
the trajectory sequences and learn the dependencies between the location points
to the users for TUL. Zhou et al. [33] proposed to use variational autoencoder
to learn the hierarchical semantic features of user trajectories. The unlabeled
data was also incorporated to deal with the data sparsity issue to improve TUL
performance. DeepTUL [15] focused on the TUL task by learning the multi-
periodic nature of user mobility from their historical trajectories and exploiting
both spatial and temporal features of the trajectory data.

However, the performance of existing works may not be promising in real
application scenarios due to the following two major challenges. First, in many
LBSN platforms like Foursquare, users will not always check in and share their
locations when going to a POI. It is common that users are not willing to check
in due to data privacy concerns, which results in huge amount of sparse and
incomplete trajectories. Existing works mostly consider the user trajectories are
complete, and thus they may not be applicable in real applications. Second,
existing supervised learning based methods need a large number of annotated
trajectory-user pairs, which is extreamly time consuming and costly. How to
conduct TUL with a few labeled trajectory-user pairs under a semi-supervised
learning framework is challenging and less explored.

To address the above challenges, this paper proposes a multi-task adversar-
ial learning model named TULMAL to perform sparse trajectory completion
and semi-supervised TUL simultaneously. Specifically, TULMAL first completes
the sparse raw trajectory data through a proposed seq2seq model. The sparse
trajectory data are first input the encoder of the seq2seq model to learn the
latent feature representations. Then motivated by the effectiveness of Kalman
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filter [10] in calibrating noise estimation for temporal data, we adopt Kalman
filtering to calibrate the estimated new locations of the completed trajectory,
which is coupled into the decoder of the seq2seq model. The completed trajec-
tories are then input into an adversarial learning model for TUL. Instead of
matching the trajectory-user pairs one by one, we consider all the users and tra-
jectories as a whole and perform TUL from the data distribution level. We aim
to learn a projection function Φ to embed users and trajectories into a common
latent space. With the assumption that two users are similar if their trajectories
are similar and vice versa, the projection Φ should make the trajectory close to
the user who has generated it in the feature space. To this end, TULMAL uses
an adversarial learning framework to learn the projection function Φ. Specifi-
cally, TULMAL contains an encoder E, a decoder O and a discriminator D.
Encoder E maps the feature vectors of trajectories into a shared latent space,
and decoder O projects the latent space features into the user space as the gen-
erated samples. The encoder and decoder together work as a projection function
Φ. The discriminator D aims to distinguish the real instances of users from the
samples generated by the decoders. Through adversarial learning, the discrim-
inator essentially estimates the approximate Wasserstein distance between the
user distribution and the projected trajectory distribution. Through the compe-
tition with discriminators, the projection function Φ will be updated to minimize
the estimated Wasserstein distance. Given a new unlabeled trajectory, it will be
projected into the user space by Φ first and then be linked to the user who is
closest to it. In summary, our main contributions are as follows:

• To the best of our knowledge, we are the first to study the semi-supervised
TUL problem with sparse and incomplete trajectory data.
• A novel model TULMAL is proposed to effectively address the studied prob-

lem. TULMAL first conducts sparse trajectory completion with a Kalman
filter enhanced seq2seq model, and then performs semi-supervised TUL with
an adversarial learning framework. The two tasks are jointly conducted un-
der a multi-task learning framework.
• We conduct extensive experiments on two real-world datasets to evaluate

the effectiveness of TULMAL. The experimental results show that our model
provides significant performance improvement over existing state-of-the-arts.

2 Related Work

2.1 Trajectory Completion

Existing works for trajectory completion can be roughly categorized into the
following two types. The first type of works is to directly complete the trajectories
with missing locations, and the second type aims to recovery the trajectories
through the next step or short-term POI prediction. For the direct location
completion approach, Zheng et al. [31] proposed to infer the missing part of
sparse trajectories by comparing the similarity of historical trajectories with
the sparse trajectories. An attentional neural network model AttnMove [26] was
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proposed to complete individual trajectories by recovering unobserved locations
based on historical trajectories. Xi et al. [25] proposed a bidirectional spatial
and temporal dependency and a dynamic preference model of users to identify
missing POI check-ins. MTrajRec [16] used a seq2seq multi-task learning model
to patch missing trajectory points while mapping them to the road network.

For next location prediction works, STRNN proposed by Liu et al. [12] tried
to model the temporal and spatial context of each layer. Specifically, STRNN
used a specific excess matrix for different time intervals and geographical dis-
tances to predict the next POI. Feng et al. [3] proposed a recurrent neural
network with multimodal embedding named DeepMove to capture the com-
plex sequential transitions by jointly embedding multiple factors that governed
human movement. DeepMove also used a historical attention model with two
mechanisms to capture multi-level periodicity, effectively exploiting the nature
of periodicity to enhance recurrent neural networks’ mobility prediction. How-
ever, a significant drawback of existing works is that they are not effective to
reduce data noise in trajectory data completion.

2.2 Trajectory-User Linking

Existing TUL models are mostly supervised, which use machine learning mod-
els especially RNN-based approaches to learn a projection function between
users and trajectories through a large number of labeled trajectory-user pairs.
TULER [7] is the first model proposed for TUL. It used RNN to model the tra-
jectory sequence for capturing the dependencies between location points. Deep-
TUL [15] learned the multi-periodic nature of user mobility from the user’s
historical trajectory and used both spatial and temporal features of the trajec-
tory data for user-trajectory matching. Considering the large number of users,
TULSN [28] was proposed to model the trajectory data by linking networks,
and only a small amount of trajectory data were needed for training the model.
TULVAE [33] was a novel semi-supervised variational autoencoder framework,
which used variational autoencoder to learn the hierarchical semantic features
of user trajectories and incorporated unlabeled data to solve the data sparsity
problem for TUL. However, the data sparsity issue in many real scenarios is
largely ignored by existing works. Existing works usually need a large number
of annotated trajectory-user pairs, which is labor intensive and costly thus in-
feasible in many applications.

3 Problem Definition

In this section, we will first give definitions of some terminologies, and then
formally define the studied problem.

Definition 1. (Cell region). We divide a city under study into a set of equal-
sized grid cells, denoted as R. Each cell region r ∈ R is a square region. The
coordinates of a cell region r are denoted by its latitude and longitude 〈xr, yr〉.
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Definition 2. (Trajectory). A trajectory T̃ = 〈s1, s2, · · · , sn〉 is defined as a
sequence of geographically located points with time order, where si = 〈x, y, t, r〉
represents a location point consisting of latitude x, longitude y, timestamp t and
the cell region r where si is located.

Note that T̃ is sparse with some locations missing. We denote the complete
trajectory as T = (p1, p2, ..., pn), where T includes all visited locations and

T̃ ∈ T . The sparse trajectory dataset T̃ =
{
T̃1, T̃2, · · · , T̃m

}
contains a small

number of labeled or linked trajectories T̃
l

and a large number of unlabeled or

unlinked ones T̃
u
. Let U = {u1, u2, · · · , un} denote the user set. We assume that

each user has some linked trajectories, and the linked trajectory set associated

with each user is denoted as T̃
l

=
{

(T̃u1 , u1), (T̃u2 , u2), · · · , (T̃un , un)
}

, where

(T̃ui , ui) means trajectories T̃ui belongs to ui, and thus T̃ui can be used to
represent ui. The studied problem is formally defined as follows.

Problem Statement. Given the sparse trajectory set T̃, the user set U

and some trajectory-user pairs T̃
l

=
{

(T̃u1 , u1), (T̃u2 , u2), · · · , (T̃un , un)
}

, our

goal is to complete the trajectories in T̃ to obtain the complete trajectories
T = {Tl,Tu}, and then learn a projection function Φ to link all the trajectories
in Tu to the users in U.

4 Methodology

Fig. 1 shows the model framework, which contains the trajectory completion step
and the adversarial learning based TUL step. In the first step, we propose SeqKF
model which integrates the Seq2Seq model with Kalman filter to accomplish the
trajectory completion task. We first obtain the cell region where the coordinates
are located by Seq2Seq. Then Kalman filtering is used for fine-grained calibration
to obtain the exact coordinate values. In the adversarial learning step, we aim to
learn a projection function that minimizes the distance between the generated
trajectory distribution and the user distribution.

4.1 SeqKF for Trajectory Completion

The proposed SeqKF model for trajectory completion consists of the encoder
and the decoder with Kalman filter. The encoder learns the spatio-temporal
dependency of the trajectories, while the decoder generates the completed tra-
jectory. Inspired by [32], instead of directly predicting the coordinate values of
the missing trajectory points, we predict the grid cells where it is located. This
approach allows for easier modeling than using coordinate values directly. Then
we predict the cell region where the location point is located by the Seq2Seq
model and use the center of the cell as the predicted coordinate value of the
location point. Finally, we correct the predicted coordinate values by a Kalman
filter to obtain an accurate prediction.
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Fig. 1. The TULMAL model. The SeqKF step is in the black dashed box, and the
adversarial learning based TUL step is in the red dashed box.

Encoder. We encode the input sparse trajectory as a fixed vector and feed
it into the Bidirectional Gated Recurrent Unit (BiGRU). GRU is a variant of
Long Short Term Memory (LSTM) network, which is able to learn long-term
dependencies of continuous data without performance degradation, while BiGRU
can capture both forward and backward temporal dependencies.

BiGRU is actually two GRUs processing the data into forward and backward
paths, and then combining the outputs in these two directions to obtain the final
hidden state. The forward and backward hidden states in time step i are denoted

as
−→
Hi and

←−
Hi. Then the output Hi in time step i is the combination of

−→
Hi and←−

Hi, i.e. Hi =
−→
Hi +

←−
Hi.

Decoder with Kalman filter. The GRU decoder is used to recover the
sparse trajectories T̃ = 〈s1, s2, · · · , sm〉. Unlike the standard Seq2Seq, in our
model, for the points presenting in the raw trajectory, we use the idea of replica-
tion operation that is widely used in NLP tasks [8,27]. We replicate these points
directly from the output slot of the decoder as follows

pi =

{
p̂i, if jk < i < jk+1,

sk, if i = jk,
(1)

where p̂i represents the cell where the missing points are predicted by decoder.

To take global relevance into account, we add an attention mechanism so
that the hidden unit hi in the decoder is updated by

hi = GRU(hi−1, pi−1, ai, Hm), (2)
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where Hm is the output state from the encoder and ai is the weighted sum
computed from all output vectors H in the encoder, which is expressed as

ai =

m∑
i=1

αi,kHi,

αi,k =
exp(ui,k)∑m

k′=1 exp(ui,k′)
,

ui,k = vT · tanh(Whhi +WHHk),

(3)

where v, Wh and WH are learnable parameters and hi denotes the current state
of the decoder. When we obtain the hidden state hi from the decoder, for points
that are not in the trajectory, we apply the softmax function to generate the
corresponding cells of the missing trajectory points conditional on the probability
of p(c|hi) as

pro(c|hi) =
exp(hi

T · wc)∑
c′∈C exp(hi

T · wc′)
, (4)

where wc is the c-th column vector of the trainable parameter matrix Wc.

Now we have the cell regions corresponding to the missing locations, we next
combine the Kalman filter (KF) with the decoder to estimate the exact locations.
KF is essentially an optimal state estimator under the assumption of linear and
Gaussian noise. It is used to calibrate the coarse-grained predictions generated
by the Seq2Seq output. In the KF model, we denote the state of the object at
timestep k as gk, which is denoted as

gk = Agk−1 + dg, dg ∼ N (0,P) , (5)

where A is the state update matrix, dg denotes Gaussian noise, and P denotes the
covariance matrix of dg. The current state can be obtained from the measurement
value zk, which is denoted as

zk = Bgk + ez, ez ∼ N (0,Q) , (6)

where B is the measurement matrix, ez denotes the measurement Gaussian noise,
and Q denotes the covariance matrix of ez. The KF model mainly estimates the
true state value g based on the predicted value ĝ− and the measured value z,
and it is divided into two steps: prediction and calibration.

In the prediction phase, the KF model predicts the prior value ĝ− and the
prior error covariance matrix R− at time step k by the following equations

ĝ−k = Aĝk−1, (7)

R−k = ARk−1AT + P. (8)

In the calibration phase, the KF model obtains the posteriori estimated state
value ĝ and updates the covariance matrix R by using the measured value z and
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Fig. 2. Details of the combination of the decoder and Kalman filter, where the red part
shows the two steps of updating and calibration of the Kalman filter.

the a priori value ĝ− by the following equations

ĝk = ĝ−k +Kk

(
zk −Bĝ−k

)
, (9)

Rk = (I−KkB) R−k , (10)

where Kk is the optimal Kalman gain, which combines the priori value ĝ− and
the measured value z for final estimation. Kk is given by the following equation

Kk = R−k BT
(
BR−k BT + Q

)−1
. (11)

Kk is used to denote the importance of the estimation error covariance matrix
Rk and the measurement error covariance matrix Q.

KF has two inputs z and Q. For the measurement z, we take out the center
coordinates (xci , yci) of the prediction unit ci output from decoder as the value
of zi. For Q, the traditional KF model sets Q as a fixed prior parameter, but
intuitively, the uncertainty of the measurements should be constantly changing
at different time periods. Therefore, we introduce a dynamic covariance matrix.
For a given set of grid cells R, we aggregate the central coordinates of all grids r
into a matrix V of size 2 ∗ |R|. At each timestamp i, we calculate the currently
estimated expected coordinate vector by

v̄i =
∑
c′∈G

pro (c′|hi) · vc′ , (12)

where pro (c′|hi) is the predicted probability of c′ calculated by the softmax
function in Eq. (4), and uc′ represents the c-th column vector in the matrix V.
We then calculate the covariance matrix Q by

Qi =
∑
r′∈R

pro (r′|hi) · (vr′ − v̄i) · (vr′ − v̄i)T , (13)

where {pro (r′|hi)}r′∈R is used to combine the covariance matrix of each cell as
the expected covariance of the measurement z.

As shown in Fig. 2, at each timestep i, the decoder cell feeds the center
coordinates of the predicted cell into the KF component, and KF calibrates the
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observation zi through two procedures, prediction and correction, to obtain the
final prediction gi. Then gi is further discredited into a grid cell p̂i, which is used
as the input of the next decoder cell. By this combination, the prediction noise
can be effectively reduced.

Loss Function Given a training set D =
{

T, T̃
}

containing a set of sparse

trajectories T̃ and the corresponding completed trajectories T, we use the cross
entropy as the loss function.

L1 =
∑

(T,T̃)∈D

−log(pro(T|T̃)). (14)

To optimize the KF component, we use the mean squared error as the loss
function, which is defined as

L2 =
1

2

∑
(T,T̃)∈D

∑
pi∈T and pi /∈T̃

([
pi.x
pi.y

]
− ĝi

)2

. (15)

Then the loss function of the trajectory completion task can be expressed as

Lcoml = L1 + λL2, (16)

where λ is a parameter to balance the importance of the two terms.

4.2 Adversarial Learning for Semi-Supervised TUL

Generator The generator aims to generate the representations of the trajecto-
ries from the raw feature space to the user space, and it consists of an encoder
and a decoder. The encoder is responsible for mapping the input trajectories
into a latent space, and the decoder is responsible for projecting the latent em-
bedding in the latent space into the target user space. We use LSTM as the
encoder and decoder. After mapping the trajectories to the target user space by
the generator, we can identify the real instances from the users by the discrimi-
nator D. Next we will derive the discriminator needed for the TUL task starting
from the objective function.

Objective Function Given the distribution DT represented by the set of
trajectories and the distribution DU represented by the set of users, the objective
of TULMAL can be defined as follows:

min
Φ
WD(DU,DΦ(T)) = inf

γ∈Υ (DU,DΦ(T))

E(U,Φ(T))∼γ [d(U, Φ(T))]. (17)

The right-hand side of Eq. (17) is a representation of the Wasserstein dis-
tance, which measures the distance between two probability distributions DU

and DΦ(T). Υ (DU,DΦ(T)) is the set of all possible joint probability distributions
for the combination of distributions DU and DΦ(T). d represents the distance
between two points (set as Euclidean distance in this paper). WD aims to find
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the ideal joint distribution Υ to reach the expectation infimum. However, it is
difficult to compute infγ∈Υ (DU,DΦ(T)) [30] by traversing all joint distributions.
The work [18] presents a simple version of WD, which can be formulated as
follows when Kantorovich-Rubinstein duality is satisfied:

WD =
1

K
sup

‖f‖L≤K
EU∼DUf(U)− EΦ(T)∼DΦ(T )f(Φ(T)). (18)

where the function f is required to be K-Lipschitz continuous. For Eq. (18), we
have to learn an ideal K-Lipschitz function f to implement it. Since the neural
network itself has a powerful approximation capability, we choose a multilayer
feedforward network to find f . It can be regarded as a discriminator D that
distinguishes between the target and generated samples, and the loss of the
discriminator can then be expressed as follows:

min
α

LD = EΦ(T)∼DΦ(T )D(Φ(T))− EU∼DUD(U), (19)

where α is the set of parameters of the feedforward network f (i.e., the discrim-
inator D). To satisfy the K-Lipschitz restriction, we use the clipping trick by
sandwiching the weights α in a small window [-c,c] after each gradient update.

The generator Φ is designed to minimize WD. For Eq. (19), Φ exists only in
the second term on the left-hand side of the equation, so we can learn the ideal
Φ by minimizing the following loss:

min
Φ

LΦ = EΦ(T)∼DΦ(T)D(Φ(T)). (20)

As the loss of the generator Φ gradually decreases, the loss of the discriminator
D, i.e., WD, also decreases, so that trajectories belonging to the same user are
grouped together in the latent space. Meanwhile, we also incorporate a small
number of annotations Tl. For a matched pair of trajectories (Tui , ui) in Tl, our
goal is to minimize the distance between the trajectory and the user as follows:

min
Φ

LW =
θw
|T l|

∑
(Tui ,ui)∈Tl

dis(Φ(Tui), ui), (21)

where θw is the hyper-parameter controlling the weight of the loss LW .
Adversarial Loss. The loss function for adversarial learning is as follows

Lal = LΦ + LD + LW , (22)

where LΦ represents the loss of generator Φ, LD represents the loss of discrimi-
nator D, and LW represents the loss of labeled trajectory-user pairs.

4.3 Final Objective Function

The sparse trajectory completion and TUL tasks are optimized simultaneously,
and the overall loss L of the two tasks is as follows

L = Lal + µLcoml, (23)
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Table 1. Dataset Description.|U |: number of users; |Tr| / |Tte|: number of trajectories
for training and testing; |P |: number of trajectory point; |R|: average length of trajec-
tories (before segmentation).

Dataset |U | |Ttr| / |Tte| |P | |R|
NYC 113 9122/2280 3561 214

TKY 258 15843/3871 4126 188

where Lcoml is the loss for trajectory completion, µ is the hyperparameter, and
Lal is the loss for TUL. The work is implemented with the Huawei MindSpore
AI computing framework.

5 Experiment

5.1 Dataset and Experiment Setup

Dataset. Two datasets collected from Foursquare are used in our experiment.
NYC dataset records about 10 months of check-ins in New York City. Each
check-in includes its timestamp, GPS coordinates and semantic information (rep-
resented by fine-grained venue-categories). TKY dataset contains about ten
months of check-in records in Tokyo.

Following [34], we randomly select |U | users and their generated trajectories
from both datasets for evaluation. For each trajectory, we randomly sample r%
points and remove the others to simulate the sparse trajectory. In our experi-
ments we keep 50% and 70% points for each trajectory, respectively. 10% of the
entire trajectories and their users are used as annotations for supervision. Table
1 shows the details of the two datasets.

Evaluation metrics. ACC@K and macro-F1 are used to evaluate the per-
formance of the model. In addition, to verify the effectiveness of trajectory
completion, we use three metrics RMSE, NDTW , and EDR for evaluation.
ACC@K is to evaluate the accuracy of the TUL problem, which is defined as

ACC@K =
correctly linked trajectories@K

the number of trajectories
.

Macro-F1 is the harmonic mean of accuracy (macro-P ) and recall (macro-R),
averaged over all categories (users in TUL).

macro-F1 =
2×macro-P ×marco-R
marco-P +macro-R

RMSE is the root mean square error between the actual and predicted values
of the coordinates of the missing trajectory points that is formulated as

RMSE =

√√√√ 1

m

m∑
j=1

(dis (pj , p̂j))
2
,



12 S. Zhang et al.

where dis (pj , p̂j) represents the Euclidean distance between the true value pj
and the predicted value p̂j .

NDTW is the normalized dynamic time warping distance between two tra-
jectories, which is modified from dynamic time warping distance (DTW),

NDTW
(
T, T̃

)
=
DTW

(
T, T̃

)
length (T )

.

EDR is the edit distance on real sequence. Specifically, given two trajectories T
and T̃ , the edit distance between them is the number of operations required to
transform T into T̃ through insert, delete and replace operations.

Baselines. To evaluate the effectiveness of TULMAL, we first compare it
with the following baseline methods: DTW [19] and LCSS [1], which compute
the distance between two trajectories by using different criteria for comparing
similarity; TULER [7], TULER-LSTM, TULER-GRU, BiTULER, TULVAE [34]
and DeepTUL [15], which use deep learning classification models to learn the
projection function between trajectories and users.

To further test the power of adversarial learning in the TUL problem, we
compare TULMAL with its variant model TULMAL-NoSeqKF, which removes
the completion module. We also compare TULMAL with the baseline methods
plus our proposed trajectory completion model SeqKF to study the effectiveness
of SeqKF. We also select two trajectory completion baseline methods, Deep-
Move [3] and STRNN [12], to compare with SeqKF to verify its effectiveness in
trajectory completion.

5.2 Experimental Results

Tables 2 and 3 show the performance of various methods on the two datasets
in terms of ACC@K and macro-F1. Table 2 shows the comparison result at a
sampling rate of 70% and Table 3 shows the comparison result at a sampling rate
of 50%, where the best values are highlighted in bold. In Table 2, one can observe
that on the dataset NYC, TULMAL-NoSeqKF improves by 2.86%, 3.15% and
1.79% in terms of ACC@1, ACC@5 and macro-F1, respectively, compared to
the best baseline method DeepTUL. This superior result is due to its ability to
exploit the multi-period nature of user mobility and to address the data sparsity
issue. After adding SeqKF to the baseline methods, the performance of all the
methods improve, which indicates that the trajectory completion component
is effective to improve the TUL performance. Our method TULML achieves
the best performance, improving the three metrics by 4.94%, 3.51% and 2.72%,
respectively, compared with the best baseline method SeqKF+DeepTUL. This
indicates that our adversarial learning based TUL component is more effective
than the baselines.

In Table 3 one can see that TULML also achieves the best performance
when the sampling rate is 50%. Compared with DeepTUL, TULMAL-NoSeqKF
improves by 2.39%, 4.9% and 2.35% in terms of the three metrics, respectively.
Compared with SeqKF+DeepTUL, TULMAL improves the three metrics by
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Table 2. Performance comparison over two datasets under a sampling rate (SR) of
70%

NYC TKY
acc@1 acc@5 macro-F1 acc@1 acc@5 macro-F1

u=113, SR=70% u=258,SR=70%

DTW 13.74% 24.58% 6.14% 10.08% 20.65% 5.41%

LCSS 15.21% 28.63% 7.54% 12.38% 23.86% 6.44%

TULER-LSTM 19.31% 46.65% 11.99% 16.14% 38.42% 9.18%

TULER-GRU 20.25% 46.82% 13.87% 17.31% 39.41% 9.68%

BiTULER 22.63% 50.42% 16.55% 18.52% 42.35% 12.94%

TULVAE 23.32% 50.25% 16.83% 18.65% 43.28% 13.76%

DeepTUL 25.62% 53.16% 19.00% 21.44% 45.83% 15.07%

TULMAL-NoSeqKF 28.48% 56.31% 20.79% 23.83% 48.11% 15.97%

SeqKF+DTW 15.43% 30.74% 7.62% 12.62% 25.83% 6.28%

SeqKF+LCSS 20.12% 37.57% 9.45% 18.07% 31.46% 8.10%

SeqKF+TULER-LSTM 23.37% 48.63% 16.20% 20.75% 42.96% 12.42%

SeqKF+TULER-GRU 25.14% 48.86% 16.40% 22.43% 42.75% 12.95%

SeqKF+BiTULER 26.84% 52.49% 17.69% 23.87% 45.62% 15.05%

SeqKF+TULVAE 27.89% 53.78% 19.28% 25.16% 48.37% 16.77%

SeqKF+DeepTUL 30.48% 57.86% 21.18% 27.45% 50.38% 18.78%

TULMAL 35.42% 61.37% 23.90% 32.84% 51.48% 22.58%

Table 3. Performance comparison over two datasets under a sampling rate (SR) of
50%

NYC TKY
acc@1 acc@5 macro-F1 acc@1 acc@5 macro-F1

u=113,SR=50% u=258,SR=50%

DTW 9.58% 16.83% 4.43% 7.62% 13.27% 3.19%

LCSS 11.32% 22.67% 6.17% 8.51% 18.47% 4.62%

TULER-LSTM 15.38% 26.77% 7.65% 12.85% 22.66% 6.41%

TULER-GRU 16.19% 30.68% 8.74% 14.67% 25.14% 6.97%

BiTULER 17.84% 32.73% 9.42% 15.98% 27.31% 7.39%

TULVAE 19.18% 35.96% 11.37% 17.22% 30.37% 8.14%

DeepTUL 22.47% 41.85% 13.21% 20.05% 34.99% 11.65%

TULMAL-NoSeqKF 24.86% 46.75% 15.56% 21.96% 38.41% 12.87%

SeqKF+DTW 12.54% 21.48% 6.21% 9.63% 15.85% 4.31%

SeqKF+LCSS 13.79% 25.31% 7.34% 10.95% 21.07% 5.56%

SeqKF+TULER-LSTM 18.46% 31.24% 9.17% 14.16% 27.60% 7.47%

SeqKF+TULER-GRU 20.15% 34.58% 10.83% 16.52% 29.89% 8.51%

SeqKF+BiTULER 20.97% 36.27% 11.68% 17.83% 31.04% 9.33%

SeqKF+TULVAE 22.49% 40.62% 13.15% 19.57% 34.41% 11.60%

SeqKF+DeepTUL 25.91% 47.36% 15.91% 23.12% 38.77% 12.84%

TULMAL 30.03% 53.64% 19.58% 26.70% 43.41% 15.49%

4.12%, 6.28% and 3.67%, respectively. From the two tables one can also see
that the results are generally better on the NYC dataset than that on the TKY
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Fig. 3. Performance comparison on SeqKF at sampling rates of 70% and 50%

dataset. This is mainly because there are fewer users in NYC than in TKY,
resulting in denser trajectories in NYC than in TKY. Denser trajectories provide
more information and thus the models can achieve better performance.

5.3 Effectiveness of Trajectory Completion

Fig. 3 shows the performance comparison of the proposed SeqKF with other
baseline methods under the sampling rates of 70% and 50%, respectively. In Fig.
3(a) one can observe that DeepMove is better than STRNN because it consid-
ers more history information. SeqKF model is better than DeepMove. This is
because SeqKF can effectively reduce the effect of noise by using Kalman filter.
One can also observe that the performance of the methods on NYC is better
than that on TKY. This is mainly because the trajectories in TKY are sparser
than those in NYC. In Fig. 3(b), SeqKF also significantly outperforms the two
baselines DeepMove and STRNN. One can also see that the performance drop
of SeqKF is much smaller than the other two methods when the sparsity rate
changes from 70% to 50%. It further verifies SeqKF can effectively reduce the ef-
fect of noise and improve the robustness of the model by combining Seq2Seq with
Kalman filter. The performance of the two baselines degrades quickly because
the smaller sparsity rate leads to sparser trajectories.

5.4 Parameter Sensitivity Study

We finally investigate the performance sensitivity of TULMAL on three param-
eters: the weight µ of the final loss function, the annotation guidance weight
θ in TUL, and the weight λ of the loss function in SeqKF. We let µ increase
from 0 to 0.5, θ increase from 0.1 to 0.5, and λ increase from 0 to 0.25. In our
experiment, the sampling rate is set to 70% for both datasets. As can be seen
in Fig. 4, the performance of the model first increases and then decreases as µ
keeps increasing, which indicates that an appropriate SeqKF loss can improve
the performance of TUL, but a too large SeqKF loss can overwhelm the ad-
versarial loss and thus hurt the performance. Similar result is produced for the
annotation guidance weight θ. The performance of the model increases first and
then decreases as θ increases. θ=0.3 is a suitable setting for both datasets. As λ
increases, the RMSE first decreases and then increases. The best performance of
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Fig. 4. The effect of three parameters µ, θ and λ on the model performance.

SeqKF is achieved when λ is 0.1, which proves that KF is effective in improving
the performance of trajectory completion.

6 Conclusion

In this paper, we proposed a multi-task adversarial learning model for semi-
supervised TUL with sparse trajectory data. TULMAL first used the trajectory
completion component SeqKF to effectively complete the sparse trajectories. Se-
qKF combined Seq2Seq model and Kalman filter effectively to alleviate the noise
for data completion. Then the TUL problem was solved by capturing the multi-
periodicity of user movement through a proposed adversarial learning model. As
TUL was conducted in the data distribution level rather than the trajectory-user
pair data instance level, the proposed model required only a small number of
annotations. We conducted extensive experiments on two real datasets. The ex-
perimental results showed that our proposal outperformed previous approaches
in the two tasks.
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