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Abstract. Many traditional machine learning and pattern recognition
algorithms—as for example linear discriminant analysis (LDA) or principal
component analysis (PCA)—optimize data representation with respect to
an information theoretic criterion. For time series analysis these traditional
techniques are typically insufficient. In this work we propose an extension
to linear discriminant analysis that allows to learn a data representation
based on an algebraic structure that is tailored for time series. Specifically
we propose a generalization of LDA towards shift-invariance that is based
on cyclic structures. We expand this framework towards more general
structures, that allow to incorporate previous knowledge about the data
at hand within the representation learning step. The effectiveness of this
proposed approach is demonstrated on synthetic and real-world data sets.
Finally, we show the interrelation of our approach to common machine
learning and signal processing techniques.

Keywords: Linear Discriminant Analysis - Time Series Analysis - Cir-
culant Matrices - Representation Learning - Algebraic Structure.

1 Introduction

Often, when being confronted with temporal data, machine learning practitioners
use feature transformations. Yet, mostly these feature transformations are not
adaptive but rely on decomposition with respect to a fixed basis (Fourier, Wavelet,
etc.). This is because simple data-adaptive methods as principal component
analysis (PCA, [12]) or linear discriminant analysis (LDA, [22]) often lead to
undesirable results for stationary time series [20]. Both methods, PCA and LDA,
are based on successive projections onto optimal one-dimensional subspaces. For
time series analysis via LDA this leads to problems, especially when the data at
hand is not locally coherent in the corresponding vector space [10]—which is likely
to be the case for high-dimensional (long) time series. In this paper we propose an
adaption of LDA that relies on learning with algebraic structures. More precisely,
we propose to learn a projection onto a structured multi-dimensional subspace
instead of a single vector. The scope of this work is mainly to introduce the
theoretical basics of structured discriminant analysis for time series, i.e., we
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focus on cyclic structures that incorporate shift-invariance and thus regularize
supervised representation learning.

From an algebraic point of view the problem at hand is mainly an issue of
data representation in terms of bases and frames [23]. In this setting we seek
a basis (or a frame [5,15]) for the input space, which is optimal with respect
to some information-theoretic criterion. When it comes to time series the vital
point is, that these algorithms can be tailored to meet the conditions of temporal
data. Basis pursuit methods like dictionary learning (DL, optimize over-complete
representations with respect to sparsity and reconstruction error) are often
altered in order to yield shift-invariance and to model temporal dependencies
[21,17,8]. Also convolutional neural networks are implicitly equipped with a
mechanism to involve algebraic structure in the learning process, because this
way “the architecture itself realizes a form of regularization” [3]. In fact both,
shift-invariant DL [21, 8] and CNN, use cyclic structures, i.e., convolutions.

However, so far the idea of learning with cyclic structures has hardly been
transferred to basic machine learning methods. The motive of this work is to
transfer the idea of implicit shift-invariance to LDA by learning with algebraic
structure. We strive for interpretable algorithms that go along with low computa-
tional complexity. This way we seek to bridge complex methods like convolutional
neural networks and simple, well-understood techniques like LDA.

Recently [1] proposed a generalization of PCA that allows unsupervised repre-
sentation learning with algebraic structure, which is tightly linked to methods like
dynamic PCA [13], singular spectrum analysis [9] and spectral density estimation
[1]. However, similarly to PCA this method does not allow to incorporate labeling
information. Yet, representation learning can benefit from class-information. In
this respect our main contribution is a formulation of linear discriminant analysis
that involves cyclic structures, thus being optimized for stationary temporal data.
We provide a generalization of this framework towards non-stationary time series
and even arbitrary correlation structures. Moreover, the proposed technique is
linked to classical signal processing methods.

2 Prerequisites

In the following we will briefly discuss the underlying theory of linear discriminant
analysis, circulant matrices and linear filtering. In Section 2.2 we revisit principal
component analysis and its generalization towards shift-invariance.

2.1 Circulant Matrices

We define a circulant matrix as a matrix of the form

g1 9gp 9p-1 gp-2 - G2
g2 g1 gp 9gp-1 - g3
G=193 92 91 gp " G4 GRDXD’ (1)

9p 9p-1 9gp-2 9gp-3 - g1
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i.e., the circulant G is fully defined by its first column vector g. In short, the
i-th row of a circulant matrix contains the first row right-shifted by ¢ — 1. In the
following, we write circulant matrices as a matrix polynomial of the form

L
G=) gP! (2)
=0

with
00 0 1
100 0
p=|0 10 O e RPXD, (3)
00 - 10

Note that P itself is also a circulant matrix.
Left-multiplying a signal x with a circulant matrix is equivalent to

Gx = F 'AFx (4)

where F € RP*D ig the Fourier matrix with coefficients

[F], 4 = % (5)

where A is a diagonal matrix with the Fourier transform g = Fg of g € R? on
its diagonal and i is the complex number, i.e., i = —1. Hence, Eq. (4) describes
a circular convolution

Gx=FAx=Flgox)=gox
Here, ® is the Hadamard product (pointwise multiplication) and ® denotes the
discrete circular convolution. Moreover, Eq. (4) describes the diagonalization of
circulant matrices by means of the Fourier matrix.

2.2 (Circulant) Principal Component Analysis

Heading towards linear discriminant analysis, it is interesting to start with the
Rayleigh quotient and its role in PCA (cf. [19]). The Rayleigh quotient of some

vector g € R with respect to a symmetric matrix S € RP*P is defined as
T
g Sg
R(g,S) = T,
g8

Maximizing R(g, S) with respect to g leads to the eigenvalue problem Sg = \g.
The optimal vector g is the eigenvector of S with the largest corresponding
eigenvalue.
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Having a labeled data set {(x,,y,)},=1,....5 With observations x € RP and
corresponding labels y € {1,...,C}, we define the overall data matrix as

|
X = x5 ---xn]| €
|

RDXN

Moreover we define class-specific data matrices X, € RP*Ne where N, is the
number of observations x,, with corresponding label y,, = c.

The relation to principal component analysis becomes obvious when S is the
empirical covariance matrix estimated from X. Assuming zero-mean data, i.e., the
expected value E {x} = 0, the matrix S = XX is the empirical covariance matrix
of X. Thus

max {R(g,S)}

is equivalent to the linear constrained optimization problem

T |2 2 _
me {Hg XHQ} st. [gll, =1, (6)
which in turn formulates principal component analysis, where maximizing

HgTXH; means to maximize variance (respectively power). As known the optimal
principal component vector(s) are found from the eigenvalue problem (cf. [12])

Sg = \g.

While classical PCA is based on a projection onto an optimal one-dimensional
subspace [1| proposed a generalization of PCA which projects on a multi-di-
mensional subspace that is formed from cyclic permutations. This results in
optimizing
max { |GX||? } s.t. — 1, 7
max {IGX7.} st gl 7)

with G being a k-circulant matrix defined by the elements of g (see Section 2.1).
The Frobenius norm ||A||f; = tr{ATA}. Solving Eq. (7) amounts to set the
partial derivatives of the Lagrangian function

L(g, \) = tr{X'"GTGX} + A (g"g — 1)
to zero. Analogously to PCA this finally leads to the eigenvalue problem (see [1])

Zg = )\g

with [Z]x, = Y., x, P! ""x, using P as defined in Eq. (3), i.e., we write G as in
Eq. (2).
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2.3 Linear Discriminant Analysis

Relying on a decomposition of the overall empirical covariance matrix without
using the class labels can result in a disadvantageous data representation. Yet,
linear discriminant analysis exploits labeling information by maximizing the
generalized Rayleigh quotient (cf. [22])

-
g Bg
B, W)= .
R(gB.W) = E2E (®)
with the beneath-class scatter matrix

c
B =) P.(X —%o) (X — o) (9)

c=1

and the within-class scatter matrix

C
wW=>)"P. (Z (%, — Xe) (%, — XC)T> : (10)

veZ.

where Z. is the index set for class ¢, i.e., Z, = {v € [1,..., N] |y, = ¢}. Moreover
X, is the sample mean of observations from the class ¢ and X is the overall
empirical mean value. The a priori class probabilities P. have to be estimated as
P. = N./N.Note that the beneath-class scatter matrix is the empirical covariance
matrix of class-specific sample mean values, while the within-class scatter matrix
is a sum of the class-specific covariances. While typically rank {W} = D the rank
of the beneath-class scatter matrix is rank {B} < C — 1.

The expression in Eq. (8), also known as Fisher’s criterion, measures the
separability of classes. Maximizing the Rayleigh quotient in Eq. (8) with respect
to g defines LDA. Hence the optimal one-dimensional subspace of R?, where the
optimality criterion is class separability due to the Rayleigh quotient, is found
from

max {gTBg} st. g"Wg = 1. (11)
gERDP
Again this constrained linear optimization problem is solved by setting the partial
derivatives of the corresponding Lagrangian L(g, A) to zero. Analogously to PCA
we find a (generalized) eigenvalue problem

% =0 < Bg=\Wg. (12)

Assuming that W1 exists, then
W 1Bg = \g. (13)

The projection X+ € RE-IXN of X € RP*N onto the optimal subspace
defined by the eigenvectors g1, .. .,gc—_1 of W™1B belonging to the C' — 1 largest
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eigenvalues is
— 8 —| ] |
Xt = : X1 XN |
— 801 — | |

i.e., X1t is the mapping of X into a feature space that is optimal with respect to
class discrimination.

3 Structured Discriminant Analysis

This section presents the main contribution of the paper, namely we introduce
a generalization of linear discriminant analysis that allows for learning with
algebraic structure. Instead of the projection onto a one-dimensional subspace
we propose to learn the coefficients of a multi-dimensional structured subspace
that is optimal with respect to class discrimination.

3.1 Circulant Discriminant Analysis

As introduced in Section 2.2 [1] proposes to modify Eq. (6) using k-circulant
matrices, which generalizes PCA towards shift invariance. In the following, we
will adopt this approach and modify linear discriminant analysis as defined by
Eq. (11) using circulant structures, i.e., we seek the coefficients of a circulant
matrix G € RP*P of the form

L
G=> gP! (14)
=1

instead of g. Again P performs a cyclic permutation, as defined in Eq. (3). An
example is depicted in Fig. 1, panel (1).

In this regard we use X, = x,, — X, (class affiliation of x, is unambiguous)
and X, = X, — X, as an abbreviation, i.e.,

and

The coefficients g € R” of G that go along with optimal class separation are
found from the linear constrained optimization problem

C C
~ 112 ~
max {;_lijHGXCHQ} s.t. C IPC Y IG5 =1, (15)

= veZL,.
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s oEm
L=D L=Dhr=1 L=DPh =4
k=1,u="DLkl u=D—-L+1 u=D—-L+1

Fig. 1. Different examples on possible structures of G with g being a straight line
from —1 to 1. These structures illustrate the dependencies associated to different
parameter settings, e.g. in panel (1) each coordinate is related to each other while in
(4) dependencies are restricted to £2/a.

which basically means to perform LDA on the data set GX.

In a geometrical understanding we seek a multi-dimensional cyclically struc-
tured subspace of R” that is optimal with respect to class separability, while in
classical LDA the sought subspace is one-dimensional. This implies that instead
of ||g"x||3 (variance) we measure the length ||Gx||2 of the projection onto the
subspace defined by G (total variation® with respect to the variable under consid-
eration, X, or %,). However, according to Eq. (4) ||Gx||3 can also be understood
as the power of the filtered signal Gx, while G is an optimally matched filter.
In a two-class setting G can even be understood as a Wiener filter [24].

The Lagrangian for Eq. (15) is

c c
Lg\) =Y Px,G"Gx.-AY_P. Y %/G"Gx, - \. (16)
c=1 c=1 veL.
Due to (P*)TPJ = P/=% Vi j € N with P according to Eq. (14) we find
x'G'Gx=x"(giP° + -+ q1gt P+ 4 g P ET 4 4+ 7P

! The total variation is the trace of the covariance matrix (cf. [18]).
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for any vector x € R”. The derivative with respect to gy is

L

L
:xTZgl (Pl_k —|—Pk_l)X: ZXTZglPl_kx. (17)
=1 =1

dxTGTGx
dgr

The second equality in Eq. (17) is using the symmetry of real inner products and
(PH)T = P, which leads to x"P~'x = (Pix)"x = x"Pix. Using Eq. (17) the
partial derivative of Eq. (16) w.r.t. gx can be written as

JL(g, \) < =T I—k= d T I—kg
B ZQZPCXchglP xc—2)\ZPC Z x,> 9P 7%, (18)
9k c=1 c=1 veZL.
Setting Eq. (18) to zero leads to the generalized eigenvalue problem
Zpg = \Lwg, (19)
where
c. )
Z5),, =Y _ PX.P'%, (20)
c=1
and
c
Zwl,, =Y P> % P'7F%,. (21)
c=1 vEZL,

Analogously to classical LDA we find the eigenvalue problem
Z,}'Zpg = \g. (22)

In contrast to LDA, for non-trivial X, rank {Zp} = rank {Zy } = L, which is
due to the permutations in Egs. (20) and (21). Every eigenvector g, defines a
circulant matrix G, and a corresponding subspace. In accordance with Eq. (15)
the length of the projection onto this subspace is

xt = | Gx|3. (23)

Note that using the nonlinear projection in Eq. (23) yields a nonlinear algorithm.
Of course this is not a necessity, since it would be viable to proceed with the
linear representation Ggx. However, Eq. (23) fits in with linear discriminant
analysis and is easily interpretable in terms of linear filtering.

3.2 Computational Aspects for Circulant Structures

Since both matrices Zg, Zy € RLXL have a symmetric Toeplitz structure? the
computational complexity of Egs. (20) and (21) can be reduced to O(L) as both
matrices are fully determined by their first row vectors zg, zyy € R respectively.

% [Z);,; is constant for constant i — j and x' P?~'x = x"P""x (cf. [1]).
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Beyond that, the term x'P'~*y realizes a circular convolution x ® y. A circular
convolution in turn can be expressed by means of the (fast) Fourier transform
(FFT, cf. [24]), ie., x®y = F7}(F(x) ® F(y)), where F denotes the Fourier
transform and F~! its inverse. This allows to compute zp and zy in O(D log D)
using the fast Fourier transform, i.e.,

C
zpl = |Y P.F ' (FX.0F%,)|, Il=1...L (24)
c=1 1
and
c
2wl = | PF 'Y F%,0F%, |, I=1.. L (25)
c=1 veZL,.

1
Using these insights the projection according to Eq. (23) can be accelerated via

xt = |F! (Fg, © Fx)|, (26)

where g, has to be zero-padded such that g, € RP.

Beneath the low complexity of estimating Zp and Zy via the FFT, there is
a considerable reduction of computational complexity in solving Eq. (22) because
L can be chosen much smaller than D. In fact, L < D is typically a reasonable
choice, because for large L the localization in frequency domain is inappropriately
precise (cf. Figs. 4 and 5 and Section 3.3).

3.3 Harmonic solutions

As can be seen from Figs. 4 and 5 for circulant structures with L = D the optimal
solution to Eq. (15) is Fourier mode. Investigating Egs. (20) and (21) for L = D
we can see that both, Zy, and Zp are circulant matrices for L = D. Generally
both matrices have coefficients of the form

[Z}k,l = XPlikX,

with some x € RP. Hence, when L = D the first row of Z is palindromic,
ie., Zy,; = Zy, p—; because P! = PP~ Thus Z, respectively Zy and Zp are
symmetric circulant Toeplitz matrices and both admit an eigendecomposition
according to Eq. (4), i.e.,

Z1,1 R1,2 R1,3 " R1,3 R1,2
21,2 21,1 212 "t 214 21,3

Z=|%13 212 211 ' 215 Z14| = FIAF € RPXP,
Z12 R1,3 ?14 "t 21,2 21,1

Notably, the inverse of a circulant (Toeplitz) matrix is again a circulant matrix [14].
Thus we can conclude that for L = D we have

Z,}ZpF = FA,
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with F being the Fourier matrix (cf. Eq. (5)). We observe that independently
of the data at hand the optimal solutions to Eq. (22) respectively Eq. (15) are
Fourier modes, i.e., for stationary data Fourier modes maximize the Rayleigh
quotient.

3.4 Truncated k-Circulants

Although circulant structures are beneficial in terms of computational complexity
their use is tied to the assumption of stationarity®. In the following we slightly
change the definition of G to a more general “cyclic” matrix I" in order to gain
more flexibility when incorporating dependencies into the structure of I'. We
refer to a cyclic matrix, when Eq. (4) is not full-filled, i.e., the matrix is based
on cyclic permutations, but is not strictly circulant. [17] describes k-circulants as
down-sampled versions of simple circulant. This approach can be generalized to
truncated k-circulant matrices

L
r=M>) gP"! (27)
=1

with M performing the down-sampling (with a factor k) and truncation of all
rows following the p-th row, i.e.,

M];; = 1 ifpu>i=jel,k+1,26+1,---, | D/ +1]x]
w 0 else.

This especially allows to model dependencies for non-stationary data (see Sec-
tion 4.2). The idea of truncation is important, as it allows a simple handling of the
boundaries by setting p = D— L+1 (as known from singular spectrum analysis [2,
9]). On the other hand using some p > 1 along with L = D is the LDA-equivalent
to dynamic PCA (cf. [1,2,13]). Setting x > 1 implements down-sampling and
is equivalent to stride in CNNs. Some examples are given in Fig. 1.4 Using T
instead of G leads to

c
Zs,, =Y PX,P'IMPF %, (28)
c=1
and
Zw)i, =Y P> % PMPF Ik, (29)
c=1 veZ.

All derivations are analogous to Section 3.1, except for the binary diagonal matrix
M with M™™ = M.® Note that with y = D and x = 1 Eqgs. (28) and (29)

3 The distribution of stationary signals is invariant with respect to time (E {z;} is
constant for all ¢ and the covariance C(x¢,xs) solely depends on the index/time
difference |t — s|) [16].

4 k-circulant structures can also be used to model Wavelet-like structures [24].

® Hence we can fully simplify analogously to the step from Eq. (17) to Eq. (18).
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are equal to Egs. (20) and (21) (circulant discriminant analysis). Moreover, for
L=Dand p=1 (or K = D) Egs. (28) and (29) coincide with B and W (Egs. (9)
and (10)). In that sense, circulant discriminant analysis and classical LDA are a
special case of truncated k-circulant structures.

3.5 Non-cyclic Structures

Using circulant structures as proposed in Section 2.1 is an adequate approach for
(weakly) stationary data sets. The generalization to truncated k-circulant matrices
allows to embed more complex dependencies into the structure of G (respectively
T') and hence allows to work with non-stationary data. Yet, when choosing the
correlation structure, of course, one is not limited to cyclic structures. As the
truncated k-circulant structure in Eq. (27) can be given as T' = 3, g MP!~ 1,
clearly we can formulate Eq. (15) using an arbitrary structure I' 4 € RP*? which

is modeled as .
Ty=) gl
=1

Here, the coefficients of II; model the dependencies of the i-th variable.

The corresponding solution is equivalent to the above derivations, i.e., we
find the generalized eigenvalue problem of Eq. (19). However, the matrices Zpg
and Zyy are defined as

and

This very general formulation also allows for more complex structures that can
explicitly model statistical dependencies for non-temporal data. In the field of
time series analysis this general approach can be used to build over-complete
multi-scale models.

4 Examples and Interpretation

In this section we illustrate the proposed method at the example of different
real-world and synthetic data sets.

4.1 (Quasi-)Stationary Data

As a start we use synthetic data generated from different auto-regressive moving
average models (ARMA model, cf. [16]) corresponding to the different classes. In
the left panel of Fig. 2 realizations from these four different models are depicted.
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sample data CDA LDA

e train data
x test data

Fig. 2. A simple example demonstrating the performance of circulant discriminant
analysis compared to classical linear discriminant analysis according to Section 4.1.

Fig. 3. This figure shows the first three eigenvectors of Z;VIZB for the ARMA-process
data set (cf. Section 4.1 and Fig. 2) and their spectrum. The right panel shows the
spectral density of the four largest classes (colored) along with Fourier transformed
(filter) coefficients. The x axis in the right panel is the frequency axis in half cycles per
sample.

For the sake of simplicity all model parameters are chosen depending on the
class index, i.e., observations belonging to class ¢ stem from a ARMA (p, ¢) model
with p = ¢ = ¢ and coefficients 0, = ¢, = 1/(c+ 1) foralli =1,..., ¢, where 0;
and ¢; are AR and MA coefficients respectively. Each class comprises N. = 50
samples, with a 50/50 train-test split. The data dimension is D = 256. In the
middle and right panel of Fig. 2 a comparison of circulant discriminant analysis
(CDA, according to Section 3.1) and linear discriminant analysis based on this
data is shown. For CDA we used L = 8. For both methods the projection onto
the first three subspaces is used. More precisely, for CDA the projection is
according to Eq. (26). Note that CDA is considerably faster than LDA, due to
the computational simplifications proposed in Section 3.2.

In Fig. 6 the “user identification from walking activity” data set (cf. [4])
from the UCR machine learning repository ([7]) is used. The data set contains
accelerometer data from 22 different individuals, each walking the same predefined
path. For each class, there are x, y and z measurements of the accelerometer
forming three time series. For further use, we use sub-series of equal length D
from a single variable (acceleration in z-direction).
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% 51
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Fig. 4. The left panel shows the optimal solution to Eq. (15) within a parameter over
the filter kernel width L based on data that stems from the ARMA process described
in Section 4.1. Here D = 64. For the special case L = D = 64 the solution is a
pure harmonic oscillation, as the discrete Fourier basis is the optimal basis in this
configuration—independently of the data set under consideration (see Section 3.3).

While the synthetic data used for Fig. 2 is strictly stationary, real-world data—
as the gait pattern data used in the examples of Figs. 5 to 7—can be assumed to
be stationary on (small) intervals [11]. For the visualization in Fig. 6 we used a
50/50 train-test-split based on observations of length D = 64 which corresponds
to approximately 2 seconds window width. For the sake of simplicity we used only
one variable (the z-coordinate). The accuracies in Fig. 6 are based on a feature
vector with 3 elements, i.e., classification is performed on the depicted data. The
overall 1-nearest neighbor accuracy on the complete data set with 22 classes on
a single variable (2-coordinate) is 46% (CDA) and 20% (LDA) respectively.

4.2 Non-stationary data

In Section 3.4 we introduced k-circulant structures, that account for non-statio-
nary data. Here we demonstrate the use of such structures using the “Plane” data
set (cf. [6]).

Often for time series the assumption of stationarity does not hold. In one
example, the data at hand is triggered, i.e., all observations start at a certain point
in time (space, ...). This results in non-stationarity, because distinct patterns are
likely to be found at a certain index. The “Plane” data set from the UCR Time
Series Archive (see [6]) is such a triggered data set. It contains seven different
classes that encode the outline of different planes as a function of angle. The
triggering stems from the fact, that the outline is captured using the identical
starting angle. Hence, the “Plane” data set is an example for non-stationary data,
that nevertheless shows temporal (spatial) correlations.

Fig. 8 shows a comparison of stationary and non-stationary parameter settings.
The difference between these settings is shown in Fig. 1. A structure for stationary
data is visualized in panel (2), while the non-stationary setting is shown in panel
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Fig. 5. Illustration of a parameter sweep over L according to Fig. 4. However, here
the underlying dataset is the “user identification from walking activity” data set (cf.
Figs. 6 and 7). Again for L = D = 64 we find a Fourier mode as optimal solution (cf.
Section 3.3).

Sample Data CDA LDA

e train data
x test data

y:li";‘—'iﬂgﬂ
7y:2:t_\7m
—y =3 TS

Acc. =~ 76% Acc. ~ 42%

Fig. 6. Comparison of LDA and CDA at the example of the according to Section 4.1.
For this figure the four largest classes of the data set are depicted.

(5) of Fig. 1. The former is equivalent to a FIR-filter with data-adaptive coefficients,
while the latter is similar to singular spectrum analysis. A detailed analysis of
interrelations between theses techniques is provided in [2].

5 Conclusion

Linear discriminant analysis is a core technique in machine learning and statistics.
In this work we introduced an adaption of linear discriminant analysis that
is optimized for stationary time series. This approach is based on the idea of
projecting data onto cyclically structured subspaces, which is related to adaptive
linear filtering. We generalize this approach towards non-stationary data and
show how arbitrary correlation structures can be modeled. This reconnects to
classical LDA, which is a special case of circulant discriminant analysis with
truncated x-circulants. The effectiveness of this approach is demonstrated on
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Fig. 7. The left panel shows the first three solutions to Eq. (22) for the “user identifica-
tion” data set according to Fig. 6 with L = 8 (cf. Section 4.1). The right panel shows
the spectral density of the four largest classes (colored) along with Fourier transformed
(filter) coefficients. The x axis in the right panel is the frequency axis in half cycles per
sample.
sample data m Stationary % Non-stationary
=1 XAV A +
—y=2 W . .

Yy =T ———+——t> | 1 9&;%«

Fig. 8. Non-stationary analysis via truncated k-circulant structures (using L = 5,k =
1,4 = D — L+ 1) compared to (stationary) circulant discriminant analysis (L = 5)
based on the “Plane” data set (D = 144). Here the projection onto the first two subspace
is shown.

synthetic stationary data and temporal data from benchmark data sets. Finally,
we discussed the connection between circulant discriminant analysis and linear
filtering as well as Fourier analysis.
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