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Abstract. Instability of trained models, i.e., the dependence of indi-
vidual node predictions on random factors, can affect reproducibility,
reliability, and trust in machine learning systems. In this paper, we sys-
tematically assess the prediction instability of node classification with
state-of-the-art Graph Neural Networks (GNNs). With our experiments,
we establish that multiple instantiations of popular GNN models trained
on the same data with the same model hyperparameters result in almost
identical aggregated performance, but display substantial disagreement
in the predictions for individual nodes. We find that up to 30 percent of
the incorrectly classified nodes differ across algorithm runs. We identify
correlations between hyperparameters, node properties, and the size of
the training set with the stability of predictions. In general, maximizing
model performance implicitly also reduces model instability.

Keywords: Prediction Churn · Reproducibility · Graph Neural Net-
works

1 Introduction

Intuitively, if we fit any machine learning model with the same hyperparame-
ters and the same data twice, we would expect to end up with the same fitted
model twice. However, recent research has found that due to random factors,
such as random initializations or undetermined orderings of parallel operations
on GPUs, different training runs can lead to significantly different predictions for
a significant part of the (test) instances, see for example [2,18,22]. This prediction
instability (also called prediction differences or prediction churn) is undesirable
for several reasons, including reproducibility, system reliability, and potential
impact on user experience. For example, if a service is offered based on some
classification of users with regularly retrained models, prediction instability can
lead to fluctuating recommendations although there was no change of the users.
Furthermore, if only one part of a machine learning system is retrained, the
subsequent parts may not be able to adapt to the difference in predictions and
overall system performance deteriorates unpredictably despite improvement of
the retrained model [10]. Finally, the reproducibility of individual predictions is
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Fig. 1: An example of prediction instability. Green nodes (3) denote correct
predictions, red ones (7) false predictions. The two sparsely connected nodes on
the right are predicted differently depending on the initialisation. Although the
performance is identical between runs, one third of the predictions are different.

important in critical domains such as finance or medicine, in which recommen-
dations reliant on (for example) random initializations might not be acceptable.

Due to this importance, there has been a recent surge of work studying the
prediction instability of machine learning models [2,7,10,13,16,18,22]. However,
research on the instability of models in graphs/network settings, such as node
classification, has received little attention so far. As an exception, two recent
studies [15,20] assessed the stability of unsupervised node embedding methods,
mainly from a geometrical perspective. An evaluation of state-of-the-art super-
vised node classification algorithms based on Graph Neural Networks (GNNs)
has —to the best of the authors’ knowledge— not yet been performed.

This paper aims to fill this research gap by presenting an extensive and sys-
tematic experimental evaluation of the prediction instability of graph neural
networks. In addition, we set out to understand how design, data, and train-
ing setup affect prediction stability.1 In more detail, we summarize the major
contributions of our paper as follows:

1. We demonstrate that the popular Graph Convolutional Networks [8] and
Graph Attention Networks [19] exhibit significant prediction instability (Sec-
tion 3.1). As a key result, we establish that while the aggregated accuracy of
the algorithms is mostly stable, up to a third of incorrectly classified nodes
differ between training runs of a model.

2. We empirically study the influence of node properties (Section 3.2), model
hyperparameters and the training setup on prediction instability (Section 3.3).
We find that nodes that are central in the network are less likely to be un-
stably predicted. High width, L2 regularization, low dropout rate, and low
depth all show a tendency to help decrease prediction instability.

3. By introspecting individual deep GNN models with centered kernel align-
ment [9], we discover a trend that deeper layers (closer to the output) are
less stable (Section 3.4).

1 Code and supplementary material are available at
https://github.com/mklabunde/gnn-prediction-instability

https://github.com/mklabunde/gnn-prediction-instability
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In general, we find that the objectives of maximizing performance and mini-
mizing prediction instability almost always align. Our results have direct impli-
cations for practitioners who seek to minimize prediction instability, such as in
high-stakes decision-recommendation scenarios.

2 Preliminaries and Experimental Setup

This section introduces our problem setting and describes the models, datasets,
and instability measures used in our study.

Multiclass Node Classification. We focus on the multiclass classification
problem on graphs G = (V,E), where every node v ∈ V has some features x ∈ X
and a one-hot encoded label y ∈ {0, 1}C with C the number of different classes,
and E is the set of edges. We only consider the transductive case, in which all
edges and nodes including their features are known during training, but only a
subset of node labels is available.

Graph Neural Networks. Graph Neural Networks [14] operate by prop-
agating information over the graph edges. For a specific node, the propagated
information from neighboring nodes is aggregated and combined with its own
representation to update its representation. For node classification, the repre-
sentations of the last layer can be used to predict the node labels.

In particular, we study in this paper two of the currently most popular state-
of-the-art models for node classification: Graph Convolutional Networks (GCN)
[8] and Graph Attention Networks (GAT) [19]. GAT and GCN differ, as the ag-
gregation mechanism of GCN uses a static normalization based on the degree of
nodes, whereas GAT aggregation employs a trained multi-head attention mech-
anism. We select the hyperparameters as stated in their respective papers. The
hidden dimension is 64 for GCN, GAT uses 8 attention heads with 8 dimensions
each. The models have two layers, with the second layer producing the classi-
fication output. For the final GAT layer, the outputs of the different heads are
summed up, in contrast to concatenation in the earlier layer. In addition to the
convolutional layers, we use dropout on the input and activations of the first
layer with p = 0.6. We apply the same dropout rate to the attention weights
in the GAT layer. GCN uses ReLU activation, and GAT uses ELU. For more
details on the investigated models, we refer to the original publications.

Training Procedure. We train the models for a maximum of 500 epochs
with an early stopping period of 40 epochs on the validation loss using the Adam
optimizer with a learning rate of 0.01. In all cases, we use full batch training.
For each dataset, we train 50 models with different initializations. We keep all
other known sources of randomness constant including low-level operations.

Datasets. We focus on the node classification task and use the following
publicly available standard datasets: CiteSeer and Pubmed [21], Coauthor CS
and Physics [17], Amazon Photo and Computers [17], and WikiCS [12]. Since
the datasets from [17] do not have public train/validation/test splits, we create
splits for them by randomly taking 20 nodes from each class for training and
using 500 nodes as validation data. The rest are used for testing. All datasets
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are treated as undirected graphs. While this could affect performance negatively,
e.g., when a class depends on the ratio of incoming to outgoing edges, we follow
the common approach in literature [8,17] and note that disregarding directions
lead to improved performance in preliminary experiments.

Measuring Prediction Instability. To quantify prediction instability, we
now define several measures that capture differences in the model output. These
measures have two main differences: They either use the predicted labels as
input, i.e., the argmax of the model output, or the softmax-normalized output.
While the first approach directly follows intuition and has the advantage of
being interpretable, it has the downside of using the discontinuous argmax, which
means that even slight differences in model output can lead to different outcomes.

We follow the definition of Madani et al. [11] and define the (expected) pre-
diction disagreement as follows:

d = Ex,f1,f21{argmax f1(x) 6= argmax f2(x)} (1)

where fi ∈ F are instantiations of a model family F and 1{·} is the indicator
function. The disagreement is easily calculated in practice by training a number
of models and then averaging the pairwise disagreement of their predictions of
individual nodes. This measure is also known as churn [1,2,7,13] and jitter [10].

The theoretically possible value of the disagreement of a pair of model in-
stantiations is bounded by their performance. For example, when two models, f1
and f2, perform with 95% accuracy, then the minimal disagreement equals zero,
which occurs when the predictions are identical. Maximal disagreement occurs
when 90% of predictions are identical, and f1 is correct on the 5% of data where
f2 is incorrect. In general, it holds [2]:

|Errf1 − Errf2 | ≤ df1,f2 ≤ min(1, Errf1 + Errf2), (2)

where Err is the error rate of a model and df1,f2 is the empirical disagreement
between f1 and f2. While two models with high error rates do not necessarily
have large disagreement, we later show that disagreement and error rate are in
fact highly correlated, a finding which has not received much attention so far.

Disagreement is an intuitive and straightforward measure of disagreement.
However, to better understand the relationship between disagreement and error
rate, we define the min-max normalized disagreement, which gives the disagree-
ment relative to its minimal and maximal possible values:

dnorm = Ef1,f2

[
df1,f2 −min df1,f2

max df1,f2 −min df1,f2

]
. (3)

A natural extension of the aforementioned measures is to condition the com-
putation on specific subgroups of predictions, e.g., the correct or incorrect pre-
dictions. As Milani Fard et al. [13], we define those as true disagreement dTrue

and false disagreement dFalse, respectively:

dTrue = E(x,y),f1,f21{argmax f1(x) 6= argmax f2(x)| argmax f1(x) = y}. (4)
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Table 1: Prediction disagreement (in %) and its standard deviation.
Dataset Model Accuracy d dnorm dTrue dFalse MAE

CiteSeer GAT 69.0 ± 1.0 10.5 ± 1.7 15.4 ± 2.5 5.2 ± 1.4 22.3 ± 3.8 3.4 ± 0.6
GCN 69.2 ± 0.7 7.1 ± 1.0 10.3 ± 1.6 3.5 ± 0.9 15.1 ± 2.4 2.9 ± 0.3

Pubmed GAT 75.7 ± 0.6 3.7 ± 1.4 6.4 ± 2.7 2.4 ± 1.0 8.0 ± 3.3 2.3 ± 0.7
GCN 76.8 ± 0.5 2.4 ± 0.7 4.1 ± 1.4 1.5 ± 0.6 5.6 ± 2.2 2.5 ± 1.0

CS GAT 90.7 ± 0.5 3.7 ± 0.5 17.3 ± 2.0 1.7 ± 0.4 22.0 ± 3.6 0.7 ± 0.1
GCN 90.7 ± 0.5 3.3 ± 0.6 15.4 ± 2.7 1.6 ± 0.5 19.9 ± 4.1 0.7 ± 0.2

Physics GAT 92.0 ± 0.7 3.8 ± 0.8 19.7 ± 4.2 1.8 ± 0.6 25.7 ± 6.4 2.0 ± 0.4
GCN 92.7 ± 0.3 1.6 ± 0.4 8.6 ± 2.7 0.8 ± 0.3 12.2 ± 4.3 1.2 ± 0.4

Computers GAT 81.0 ± 1.5 9.5 ± 2.2 21.6 ± 5.6 4.8 ± 1.8 29.6 ± 7.3 2.3 ± 0.5
GCN 81.2 ± 0.9 9.9 ± 1.9 24.2 ± 4.9 4.8 ± 1.3 31.9 ± 6.0 2.3 ± 0.4

Photo GAT 90.3 ± 0.8 4.4 ± 1.1 18.9 ± 4.9 2.0 ± 0.8 26.0 ± 6.9 1.5 ± 0.3
GCN 90.8 ± 0.5 3.7 ± 0.8 17.5 ± 3.7 1.6 ± 0.5 24.1 ± 5.5 1.4 ± 0.3

WikiCS GAT 79.6 ± 0.3 3.8 ± 0.5 8.6 ± 1.3 1.7 ± 0.3 11.7 ± 1.8 0.9 ± 0.1
GCN 79.4 ± 0.2 3.3 ± 0.4 7.6 ± 1.0 1.6 ± 0.3 10.1 ± 1.4 0.7 ± 0.1

dFalse is computed analogously. False disagreement is less reliant on model per-
formance as it is always possible that incorrectly predicted nodes are predicted
differently in another run if the second model has equal or lower performance.
False disagreement and normalized disagreement are especially important to dis-
entangle model performance and stability since model hyperparameters, such as
width, may affect performance and disagreement jointly.

All of the above measures work on the hard predictions of the models. To mea-
sure the difference between the output distributions, we use the mean absolute
error, where C is the number of classes: dMAE = Ex,f1,f2

[
1
C ‖f1(x)− f2(x)‖1

]
.

3 Results

This section presents our main results on the instability of GNNs. We showcase
overall results before introducing detailed analyses on the effect of node proper-
ties and model design. Finally, we describe results of inspecting the instability
of GNNs layer-by-layer. We always report results on examples not seen during
training. For all experiments, we only show a subset of the results due to space
constraints. The complete results can be viewed in the supplementary material1.

3.1 Overall Prediction Instability of GNNs

We now demonstrate the prediction instability of GAT and GCN on several
well-known datasets.

We show the results in Table 1. The prediction disagreement d is between
three and four percent, with the exceptions of CiteSeer and Computers, where
the disagreement is almost ten percent. Models with higher accuracy tend to have
lower disagreement, but the datasets must be taken into account. For example,
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Fig. 2: Prediction disagreement for PageRank septiles on selected datasets. Low
septile index corresponds to low Pagerank. On most datasets, we see that low
PageRank nodes are less stably predicted than high PageRank nodes. However,
on CiteSeer the trend is unclear.

the classification accuracies are higher on the Computers dataset compared to
Pubmed, but disagreement is higher as well. We find that dnorm is lower than
25 percent, which means that disagreement is relatively close to the minimum
that variation in model performance allows. Interestingly, nodes that are falsely
predicted by one model have a high probability of being predicted differently
by another model. False disagreement is almost always at least one magnitude
larger than true disagreement, which is partially explained by the high perfor-
mance of the models. Finally, the mean absolute error reveals that the predicted
probabilities of classes are not much different between models. Overall, GNNs
clearly demonstrate prediction instability to a significant degree.

In the following, we focus in our discussion on the prediction disagreement
measure d. Typically, identical tendencies can be observed for the other measures.

3.2 The Effect of Node Properties

Next, we examine the unveiled prediction instability in more detail and set them
in relation to data properties. We consider four node properties: i) PageRank, ii)
clustering coefficient, iii) k-core, and iv) class label. The first three are related
to the graph structure, whereas the class label is related to underlying node
features. PageRank measures the centrality of a node, the clustering coefficient
the connectivity of a node neighborhood, and the k-core of a node is the maximal
k, for which the node is part of a maximal subgraph containing only nodes with
a degree of at least k. Thus, the k-core gives an indication of both connectivity
and centrality. See the supplementary material for formal definitions.

For the structural properties, we divide the nodes into seven equal-sized parts
(septiles) with respect to the analyzed property. Then, we record prediction
instability and model performance for each of these subgroups of the data. We
use the same models as in the previous section.

We give a representative overview of prediction disagreement in relation to
the values of structural properties in Figure 2. Central nodes show lower pre-
diction instability. Low clustering negatively impacts stability, but there is no
consistent relation over all datasets for other septiles. A high core number re-
duces the risk of prediction instability. For all properties, the results depend on
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Fig. 3: Relation between subgroup accuracy and prediction disagreement for
GAT with respect to the node classes (left) and PageRank septiles (right). The
higher the accuracy, the lower the disagreement. The correlation between ac-
curacy and disagreement suggests that central nodes are stably predicted due
to high model performance on that subgroup of the data. Results for the other
properties and GCN are similar.

the dataset to some extent. We attribute many of the differences in prediction
instability to differences in model performance in different subgroups (Figure 3).
Now, we describe the results in more detail.

Structural Properties. Nodes with higher PageRank have lower prediction
disagreement on all datasets except Pubmed. However, the magnitude of the
difference varies depending on the dataset. Interestingly, the disagreement of
falsely predicted nodes is roughly constant in many cases. This also holds for
normalized disagreement, which shows that differences between subgroups can
be explained to a large degree by differences in accuracy. The MAE of the output
distributions almost always decreases with higher PageRank.

There is no consistent relationship between the clustering coefficient and the
prediction instability in our results. The only common trend is that low cluster-
ing is correlated with high prediction disagreement. Higher clustering coincides
with lower prediction disagreement on WikiCS and CS, Physics and Computers
display an U-like relationship. On Photo, there is no clear trend. For Pubmed
and CiteSeer, more than 65% of the nodes have a clustering coefficient of zero, so
a comparison of equal bins is not possible. Similar to PageRank, false and nor-
malized disagreement are almost constant in many cases, which again highlights
that the prediction disagreement is closely related to the model performance.

On all datasets, the group with the highest k-core has the lowest prediction
disagreement, and the group with the lowest k-core has the highest disagreement.
In between, we do not observe a clear trend. Furthermore, the variance of the
disagreement decreases with increasing k-core. Again, false disagreement and
normalized disagreement do not show large differences.

Class Label. There are large differences between classes with respect to both
the average disagreement and its variance. Differences shrink for false disagree-
ment and when normalizing for accuracy. MAE behaves similar to disagreement.
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Fig. 4: Effect of training data on disagreement (left) and error rate (right) for
GCN.

Classes with few examples are not less stable than large classes. As shown
in Figure 3, the average accuracy explains much of the differences in disagree-
ment. Interestingly, the variance of the accuracy does not impact the prediction
disagreement, although it affects the lower bound of prediction disagreement,
which depends on the performance difference of two models.

3.3 The Effect of Model Design and Training Setup

In the previous section, we find evidence that prediction stability is related to
model performance. Model design and training setup reasonably influence model
performance (and thus may impact prediction stability), but how exactly they
correlate with prediction stability and if they influence stability beyond the per-
formance is unclear. We test the influence of individual hyperparameters on
prediction stability by following the training protocol of Section 2, but changing
one hyperparameter per experiment, if not specified otherwise. Since including
standard deviations decreases readability of the visualizations, we focus on the
mean value here and refer to the supplementary material for more details.

Training Data. To analyze the effect of training data availability on predic-
tion stability, we vary the number of node labels available for training between
1 and 60% of all nodes and use a fixed-size validation set of 15% of the data. We
sample the nodes of each class proportionally to their total class size, so that
nodes of all classes are present in the test set. Further, to avoid dependency on
specific data splits, we repeat the experiment with 10 different data splits per
graph. In total, we train 42000 models for this experiment.

Results are shown on a log-log scale in Figure 4. We find that both the
disagreement and the error rate decrease significantly with increasing available
training data. This underlines the correlation between model performance and
disagreement. The same trends can also be observed for the other measures of
disagreement. Only Pubmed shows significantly different behaviour; that is, the
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Fig. 5: Prediction disagreement (left) and error rate (right) for training GCN
with Adam, SGD with momentum of 0.9, and SGD without momentum.

Fig. 6: Effect of L2 reg. on disagreement (left) and error rate (right) for GCN.

disagreement does not decrease. GAT results are highly similar and also show a
smooth decrease in disagreement and error rate.

Optimizer. We train the models with different optimizers: Adam, Stochas-
tic Gradient Descent (SGD), and SGD with momentum (SGD-M), which we
set to 0.9. We show the results for GCN in Figure 5. For prediction disagree-
ment, SGD performs much worse than SGD-M and Adam. SGD-M performs
on par with or better than Adam, with the exception of Pubmed. Overall, dis-
agreement and error rate are correlated, but SGD-M optimization leads to lower
disagreement. Furthermore, SGD-M decreases the average MAE between the
output distributions of the models more than Adam. For GAT, Adam and SGD-
M perform similarly with a slight edge to Adam. SGD performs much worse with
respect to both error rate and disagreement. Based on the discrepancy between
GCN and GAT results, there does not appear to be a simple rule to select one
of the tested optimizers to generally minimize prediction disagreement.

L2 Regularization. We show the results of GCN for varying L2 regular-
ization in Figure 6. Disagreement decreases only slightly with moderate regu-
larization. We observe the largest changes, both for the disagreement and error
rate, with the maximal value of L2 regularization. Strong regularization reduces
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Fig. 7: Effect of dropout on disagreement (left) and error rate (right) for GCN.

Fig. 8: Effect of width on disagreement (left) and error rate (right) for GCN.

disagreement (all measures) on 5 out of 7 datasets compared to without regu-
larization, though changes are small. Interestingly, disagreement decreases even
when the error rate stays roughly constant.

Dropout. We show the results for varying dropout rates in Figure 7. Large
dropout rates increase disagreement for 6 of the 7 datasets for GCN. In con-
trast to previous observations, change in disagreement does not follow the error
rate. Instead, the more dropout, the more prediction disagreement in most cases.
Although the effect is small in absolute terms, dropout influences prediction sta-
bility negatively. Even so, a finely tuned dropout rate can improve disagreement
in some cases while also decreasing the error rate.

Width. We vary the width of the models on a logarithmic scale between 8
and 256. GAT always has eight attention heads, which means that the dimension
per head varies between 1 and 32. Figure 8 shows the absolute disagreement d
and the error rate in relation to the width for GCN. Wider models have less
prediction disagreement, which holds even for models for which the error rate
does not decrease. This relation is mirrored in all stability measures.

Depth. We change the number of layers from 2 to 6. Between every layer,
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Fig. 9: Effect of depth on disagreement (left) and error rate (right) for GCN.

Fig. 10: Comparison of baseline GCN model and a stable variant, which imple-
ments all hyperparameters as suggested by the previous experiments.

there are dropout and activation functions, while otherwise following the previ-
ously used training procedure. Figure 9 shows the results for GCN. Prediction
disagreement increases with depth of the model. Similarly, the error rate in-
creases, which can be explained by a lack of training techniques for deep GNNs,
e.g., residual connections or normalization. Nevertheless, even when the model
performance does not decrease much, prediction stability decreases, e.g., on the
Physics dataset, the absolute disagreement increases almost four-fold. We make
the same observation for GAT, which suggests that the depth of a model nega-
tively affects its prediction stability.

Combining Optimal Hyperparameters. To test whether the observa-
tions so far can inform model selection, we now train “stable variants" of GAT
and GCN and compare them with the baseline models, as described in Section 2.
We select hyperparameters of the models according to the previous experiments,
i.e., those that minimize the disagreement. Since the best hyperparameters dif-
fer between datasets, we manually pick them as width of 256 (200 for GAT on
Physics due to memory limitations), depth of 2, dropout of 0.2, and L2 regular-
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Fig. 11: Similarity of layers to corresponding layers of another trained GCN on
CiteSeer (left) and GAT on CS (right). The deeper the layer in the trained
model, the less similar they are.

ization of 10−4. We use the Adam optimizer and the same data as in all previous
experiments. Using SGD with momentum yields similar results.

We show the results for GCN in Figure 10. The stable variant has less pre-
diction disagreement on 6 of the 7 datasets, despite not always having a lower
error rate. We make a different observation for GAT, having lower disagreement
on only 2 of the 7 datasets as the average error rate increased considerably on
the datasets that disagreement is high on.

3.4 Layer-wise Model Introspection

In the last part of our analysis, we aim to obtain a better understanding about
where in the deep neural architecture instability primarily arises. For that pur-
pose, we investigate the (in-)stability of internal representations with centered
kernel alignment (CKA) [9] to measure the similarity of representations from
corresponding layers in different models, see below for a slightly more extensive
description. That is, we compare layer 1 of model A with layer 1 of model B,
layer 2 of A with layer 2 of B, etc. We focus on the similarity of models with
varying depths and train the models according to Section 2, but again vary the
number of layers and add dropout layers between them.

Centered Kernel Alignment. CKA is a state-of-the-art method for mea-
suring the similarity of neural network representations. Roughly speaking, CKA
compares two matrices of pairwise similarities by vectorizing them and calculat-
ing the dot product. We use the linear variant of CKA, i.e., the pairwise similar-
ities are calculated with the dot product, since it is efficient and other variants,
such as using the RBF kernel for similarity computation, do not show better
performance consistently. For details, we refer to the original publication [9] and
the supplementary material.

Results. Figure 11 shows some exemplary results. In these plots, each color
of boxplots refers to one model with a specific number of layers while the different
groups of boxplots from left to right refer to the position of the layer within the
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model architecture. In general, the more layers the model has, the lower the
similarity of the layers . Moreover, the deeper the layer (closer to the output),
the lower the similarity. Similarly, the variance of the similarity increases with
depth. Some outliers exist, for which changes in similarity between layers are
small, or the similarity increases with depth (GCN WikiCS and Computers, 6
layer GAT on Pubmed). Overall, however, deep GNNs have more variance in
their internal structure and representations.

Although the first layers may suffer from vanishing gradients, they are much
more self-similar than the deeper layers, which should receive much larger up-
dates. On the one hand, these large updates could make deep layers less similar
as they may need to adapt to varying outputs of the earlier layers. On the other
hand, the first layers are extremely similar, although they start from a random
initialization. As a consequence, these layers provide very similar representations
to deep layers, questioning why the deep layers are dissimilar. We leave a more
detailed analysis for future work and hope that this observation sparks further
research into the learned representations of GNNs.

4 Discussion

We discuss limitations and implications of our work, as well as future work.
Limitations. The models we study do not use popular techniques for deep

GNNs, such as normalization or residual connections. Furthermore, we avoid
mini-batching and distributed training. Although relatively shallow GNNs work
well on many tasks, recent work introduces new benchmarks that benefit greatly
from more complex models [3,6]. Therefore, interesting future work would be to
explore how these techniques, combined with larger models and larger graphs,
affect prediction stability.

We find statistical relationships between model hyperparameters and predic-
tion stability. However, it is not transparent how different aspects, such as model
performance, model hyperparameters, and prediction stability, causally influence
each other. Attribution of changes to specific variables is difficult; hence, we only
propose heuristics on how to select hyperparameters that minimize prediction
instability. However, as our experiments show, training a model with hyper-
parameters jointly selected according to these rules does decrease prediction
instability if care is taken with respect to performance. Causal attribution and
consequent robust rules for model selection with respect to prediction stability
is another avenue for future work.

Dataset Dependency. Repeatedly, models behave differently on the Pubmed
dataset compared to the others. This suggests that the dataset plays a crucial
role in determining prediction stability. We did not identify a single property of
the dataset that sensibly explains the effect, which highlights the opportunity of
examining prediction stability from the data perspective.

Implementation as a Source of Instability. We investigated the sources
of instability by doing additional experiments with fixed random seeds and mod-
els trained on GPU vs CPU. We do not restrict the implementation to deter-
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ministic low-level algorithms, see the supplementary material for full results. We
find that with a fixed random seed on the exact same data, GCN behaves com-
pletely deterministic while GAT in some cases still exhibits considerable insta-
bility. Surprisingly, even when GAT is trained on a CPU with fixed initialization
and training, minor instability remains. Since the instability does not show all
the time, we speculate that small implementations issues could be hidden ini-
tially and only influence stability later, e.g., after data updates. Overall, GPU
instabilities are much smaller compared to differences introduced by changing
initialization. This is good news from a pure reproducibility perspective, but we
consider the instabilities established and analyzed in this paper still as crucial
in many practical scenarios since they emphasize the sensitivity of predictions
on implementation details.

Influence on Model Selection. Our results have direct implications on
model selection. If we have to decide between multiple models that perform
equivalently, and we are interested in minimizing prediction instability, then we
can select the model with higher width and L2 regularisation, and lower dropout
rate and depth. While this may not be a straightforward decision, as tradeoffs
between different variables have to be made, the proposed rule can be a rough
guide.

5 Related Work

Our work is related to previous research that we outline in the following section.
Stability of Node Embeddings. Wang et al. [20] and Schumacher et

al. [15] study the influence of randomness on unsupervised node embeddings.
These embeddings, mainly computed via random walk-based models or matrix
factorization, capture some notion of proximity of nodes, which should then be
reflected in the geometry of the embedding space. They both measure large vari-
ability in the geometry of the embedding spaces, e.g., in the nearest neighbors of
embeddings. Schumacher et al. find that the aggregated performance of down-
stream models does not change much, but individual predictions vary. Wang et
al. further demonstrate that less stable nodes are less likely to be predicted cor-
rectly. In contrast to their work, we focus on supervised GNNs and prediction
instability instead of geometrical instability.

Impact of Tooling. Zhuang et al. [22] find that prediction instability arises
along the entire stack of software, algorithm design, and hardware. Modifying
model training to be perfectly reproducible incurs highly variable costs, in some
cases more than tripling the computation time. Moreover, they observe that
subgroups of the data are affected to different extents from random factors in
training. Introducing batch normalization reduces performance variability but
increases prediction disagreements. They focus mainly on large CNNs, whereas
we study comparatively much smaller GNNs.

Increasing Prediction Stability. Several recent works successfully intro-
duce techniques to increase prediction stability. For example, by regularizing la-
bels [1,13], distillation [2,7], ensembling techniques [16,18], or data augmentation
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[18]. It is noted that these techniques sometimes also increase model performance,
but a general relationship between prediction stability and model performance
is not highlighted. For the CNNs in the work by Summers and Dineen [18], even
single bit changes lead to significantly different models.

Model Influence. Liu et al. [10] study how data updates affect predic-
tion stability in the domain of language processing. Moreover, they compare
whether model architecture, model complexity, or usage of pretrained word em-
beddings improve stability. They identify a trade-off between prediction stability
and model performance. In our experiments, the trade-off is small or nonexistent,
validating experiments of prediction stability in different domains.

GNN Robustness. The stability of GNNs can be viewed from a different
perspective: adversarial unnoticable perturbations of the graph data can sig-
nificantly reduce model performance and thus prediction stability [23]. Zügner
and Günnemann [24] propose a method to certify robustness of nodes against
such attacks. Further, stochastic perturbations in the graph structure can lead
to instability of predictions. Gao et al. [5] show that increased width and depth
increase possible changes of outputs of GNNs. In this paper, we assume that
only the initialization changes, i.e., there are no changes to the graph.

6 Conclusion

In this paper, we systematically assessed the instability of Graph Neural Net-
work predictions with respect to multiple aspects: random initialization, model
architecture, data, and training setup. We found that up to 30 percent of the
falsely predicted nodes are different between training runs that use the same
data and hyperparameters but change the initialization. Nodes on the periph-
ery of a graph are less likely to be stably predicted. Furthermore, models with
higher width, higher L2 regularization, lower depth, and a lower dropout rate
are more stable in their predictions. Instability of deep GNNs is reflected in their
internal representations. Finally, maximizing model performance almost always
implicitly minimizes prediction instability.

Future work may study prediction instability of GNNs from the perspective
of larger, more complex models or data properties. Furthermore, finding clear
causal relationships may be beneficial to select models that are more stable with
respect to their predictions. Lastly, it would be interesting to see whether existing
techniques aiming to reduce model instability for other types of models perform
well for GNNs.
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