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Abstract. Items (users) in a recommender system inherently exhibit
hierarchical structures with respect to interactions. Although explicit hi-
erarchical structures are often missing in real-world recommendation sce-
narios, recent research shows that exploring implicit hierarchical struc-
tures for items (users) would largely benefit recommender systems. In
this paper, we model user (item) implicit hierarchical structures to cap-
ture user-item relationships at various resolution scales resulting in bet-
ter preferences customization. Specifically, we propose a U-shaped Graph
Convolutional Network-based recommender system, namely UGCN, that
adopts a hierarchical encoding-decoding process with a message-passing
mechanism to construct user (item) implicit hierarchical structures and
capture multi-resolution relationships simultaneously. To verify the effec-
tiveness of the UGCN recommender, we conduct experiments on three
public datasets. Results have confirmed that the UGCN recommender
achieves overall prediction improvements over state-of-the-art models,
simultaneously demonstrating a higher recommendation coverage ratio
and better-personalized results.

Keywords: Recommender Systems - Hierarchical Model - Embedding
Learning.

1 Introduction

Recommender systems implemented by a wide range of online businesses are
critical in alleviating the information overload problem [30]. The basic point of
building a recommender system is to model the user-item relationship based
on previous interactions. As one of the most widely used recommendation tech-
niques, model-based collaborative filtering (CF) algorithms extract useful in-
formation about user-item connectivity by projecting users and items into a
shared latent space and representing them with corresponding low-dimensional
embeddings [9] [15]. In other words, model-based CF describes user preferences
for items through the inner product of the projected embeddings in the shared
space [22]. Therefore, the algorithm for projecting users/items into certain em-
beddings plays a key role in the success of these model-based CF recommenders.

There are many approaches to learn user/item embeddings, including clas-
sical matrix factorization (MF) [14], neural network-based models, and graph
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convolutional networks (GCNs)-based models [26] [8]. Although these models
present competitive performance, they also have the obvious drawback of ne-
glecting the inherent hierarchy of items/users. More specifically, most existing
embedding learning models only focus on modeling individual items or users
independently, which cannot fully capture the items’ (or users’) hierarchies in-
formation and hence fail to precisely model personalized preference. Take the
movie Frozen as an example, it belongs to the subgenre "Family Animation"
and can be further categorized into the genre "Animation", demonstrating a hi-
erarchical structure of "individual — sub-genre — genre". Similarly, users may
present a similar hierarchy of "individual — occupation — age". Since items of
the same subgenre (or genre) are likely to have similar attributes, they are likely
to acquire similar preferences [25]. Thus, hierarchical information about items or
users can very likely improve the preference modeling process of recommender
systems.

It is worth pointing out that in real-world recommendation scenarios, ex-
plicit hierarchies are often not applicable [24]. For this reason, some researchers
have used MF-based models to learn implicit item/user hierarchies [25]. Specif-
ically, the implicit item/user hierarchy can be easily obtained by decomposing
the original item/user embedding matrix into several smaller and more com-
pressed item/user matrices, respectively. The success of these models confirms
the validity of exploring implicit hierarchies [2]. However, there are still two lim-
itations that limit the performance of these models, which can be summarized
as the limited representation based on a simple MF model and the neglect of di-
verse collaboration signals in different hierarchical levels. More specifically, recent
studies have argued that the basic MF-based models simply adopt the interac-
tion between users and items as the ultimate objective function, but ignore the
potential similarity signals stored in the interaction [1]. From this perspective,
models based on graphical convolutional networks (GCNs), which can naturally
model the user-item relationship in the interaction graph structure, propose a
more reasonable and efficient way to build recommender systems. In addition to
the limitations imposed by simple models, existing models that focus solely on
building two separate multilayer architectures are problematic. More directly,
exploring parallel user/item hierarchies only shows the multi-level relationships
within a user or item. However, the core information contained in the hierarchy is
the multi-resolution collaborative signals stored in different levels. For example,
given the interaction that a user "Alice" like a movie "Frozen", exploring the
structure of "Alice — Second Grade Nursery Student — Kids" and "Frozen —
Family Animation — Animation" merely displays the inner association for a user
or an item. Indeed, this interaction not only reveals "Alice’s" unique preference
for "Frozen", but also represents a shared interest that "Second Grade Nursery
Students" may prefer "Family Animation", or announces a more general signal
that "Kids" prefer "Animation". Clearly, these multi-resolution collaborative
signals will help generate better recommendation predictions.

Based on the above analysis, we propose an implicit user/item hierarchical
exploration model, i.e., UGCN, which utilizes a u-shaped hierarchical graph con-
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volution model and is able to capture user-item collaboration signals in different
resolution scales. Specifically, the u-shaped structure uses a pooling operation to
adaptively compress the original user-item interaction graph into smaller com-
pressed graphs. In other words, by merging similar nodes in the fine-grained
graph into a new group node in the coarse-grained graph, collaboration sig-
nals at different resolution scales can be better captured by graph convolution
operations on different compressed graphs. Then, the captured collaborative sig-
nals are gradually projected back to the original nodes through symmetric un-
pooling operations. With the multi-resolution collaborative signal captured in
final item/user embeddings, better personalized recommendations can be ulti-
mately generated.
In summary, this work has the following main contributions.

— We propose the UGCN recommender, a U-shaped hierarchical recommender
based on graph convolutional networks, which captures diverse collaborative
signal from a stacked multilayer graph architecture.

— We conducted an empirical study on three million-level datasets of recom-
mender systems. The experimental results show that the proposed model
achieves the best recommendation performance, obtains significant improve-
ments in recommendation coverage, and at the same time obtains more per-
sonalized recommendation results.

2 Related Work

There are many state-of-the-art model-based recommender systems. The most
representative one is Matrix Factorization (MF). MF-based models such as PMF
[19] and SVD [15] utilize straightforward procedures to generate low-dimensional
user (item) embeddings directly from the user (item) one-hot vector. Although
these models could achieve reasonable results on some experimental datasets,
they are still insufficient for real-world recommender systems due to their simple
structure and limited model expressions. With the superior power of represen-
tation learning, utilizing neural architecture to learn embeddings has become
popular for model-based recommender systems. Zhuang et al. [31] proposed a
model named REAP, which applies an autoencoder to generate the latent fac-
tors for users and items from the user-item matrix. Xue et al. [28] proposed a
Deep Matrix Factorization Model (DMF) by utilizing two parallel neural net-
works to map the user and item into low-dimensional space from both explicit
rating and implicit behavior. Han et al. [7] indicated that using one aspect rep-
resentations is insufficient and proposed modeling the complicated relationship
in recommender systems through Heterogeneous Information Network (HIN).
Ebesu et al. [5] believed the user/item neighborhood information can help gen-
erate better results and utilized a memory network to model the neighborhood
information and generate neighbor-based embeddings. Moreover, Jiang et al. [11]
proposed a convolutional neural network-based Gaussian model to represent the
users (items) with uncertainty and create better recommendations.
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Compared with the traditional collaborative filtering [22] and neural collab-
orative filtering recommender systems, the GCN-based recommendation meth-
ods demonstrated competitive performances [8] and have attracted much re-
search attention. Wang et al. [26] proposed Neural Graph Collaborative Filter-
ing (NGCF), which utilizes a bipartite graph structure to exploit the high-order
user-item connectivity and achieve promising recommendation performance. He
et al. [8] further simplified the design of GCN to make it more concise and appro-
priate for recommendation. Moreover, Sun et al. [23] pointed out that directly
applying GCNs to process the bipartite graph is sub-optimal since this method
neglects the intrinsic differences between user nodes and item nodes. To this
end, they proposed NIA-GCN, a new framework that explicitly models relation-
ships between neighboring nodes and exploits the heterogeneous nature of the
user-item bipartite graph. Liu et al. [17] mentioned that existing GCN-based
recommenders often suffer from the over-smoothing problem. To alleviate that
problem, they presented a recommendation model, namely IMP-GCN, which
performs high-order graph convolution inside subgraphs and hence limits the
neighbor exploration process to similar users (items). Furthermore, Wu et al. [27]
explored self-supervised learning on GCN-based recommenders and targeted im-
proving their recommendation accuracy and robustness. Although these models
present promising recommendation results, the neglect of item (user) hierarchical
structures still prevents them from generating superior predictions.

In fact, item (user) hierarchical structures have been widely explored and uti-
lized in recommendation scenarios [29] [20]. For example, Lu et al. [18] utilized
item hierarchies stored in side-information and demonstrated the effectiveness
of incorporating explicit hierarchical structure in recommender systems. How-
ever, real-world recommendation data may not contain detailed external side
information or can not directly provide explicit item (user) hierarchy structures.
Therefore, exploring and using the implicit hierarchical structures of user-item
interaction information has become a common method to solve this problem.
Wang et al. [25] proposed a framework, namely IHSR, which can construct im-
plicit item (user) hierarchies by gradually decomposing the item (user) char-
acteristic matrix. Analogously, Li [16] proposed a Hidden Hierarchical Matrix
Factorization (HHMF'), which learns the hidden hierarchical structures from the
user-item scoring record without prior knowledge of the hierarchy. Even though
these models achieve competitive results compared to basic model-based recom-
menders, the straightforward MF-based strategies still limit the model expression
and result in sub-optimal predictions.

In summary, most existing embedding learning models neglected the inher-
ent item (user) hierarchical structure and did not fully capture the valuable
information stored in user-item interactions. Meanwhile, the explicit hierarchi-
cal structures are not often provided in real-world recommendation scenarios,
and existing implicit hierarchical models are merely based on simple matrix
factorization, which is insufficient for handling increasingly sparse and complex
recommendation scenarios. Hence, a better hierarchical model for the recom-
mendation problem is needed.



Title Suppressed Due to Excessive Length 5

3 Methodology

3.1 The Basic Collaborative Filtering Model

The basic idea of traditional model-based collaborative filtering algorithms can
be summarized as utilizing a model to project an individual user/item into a
shared latent space and modeling a user’s preference given an item by the inner
product of the corresponding user/item embeddings. To make it more clear, we
adopt e, and e; to represent the learned personalized embedding for user u and
item ¢ respectively. Moreover, as classic models merely rely on interactions and
neglects high-level hierarchical context information, we formulate e, and e; as
eu—co and e;_.g, where c0 indicates the context extracted in the Oth hierarchy.
Then, the preference of user u given item ¢ can be computed as follows:

Yui = €q * (ei)T = €y—c0 * (ei—CO)T (1)

3.2 Modeling Implicit Hierarchies

In the basic model, the interaction is often considered as the unique preference of
a single user given a specific item. However, as a member of our modern society,
a user’s behavior is inevitably influenced by implicit contextual information and
would demonstrate some implicit context-based preferences. When it comes to
interaction modeling recommender systems, we interpret the implicit contextual
information as the group-level collaborative signal. More specifically, according
to the example in Section 1, a user’s interaction is not only demonstrating an
individual’s personalized interest but also indicates several informative group-
level tendencies. As these group-level tendencies (multi-resolution collaborative
signal) are useful for understanding the user’s behavior and would be helpful for
generating customized recommendations, a hierarchical model becomes a more
reasonable way to construct general recommender systems. To be more specific,
we decompose user embedding e, and item embedding e; into the summation
of different representations, which corresponds to the preference information
learned among different levels of hierarchical architectures. Take a n-levels hier-
archical model as an example; the final user embedding e,, and item embedding
e; can be calculated through:

€y =€y—c0tEy—cltEy—c2t ... te€y_cn (2)
€ =€ 0t €iclT € 2t .t € cn (3)

, where e, _.o and e;_.o represent the personalized embedding for individual
user v and item ¢ respectively. While, ey_cp,x € (1,n) and e;_cy,y € (1,n)
demonstrate the diverse group-level collaborative signals. It is worth noticing
that ey,—cz,z € (1,n) and e;_cy,y € (1,n) would be shared among the group
members within the same group at the same hierarchical level. Moreover, the
greater x value in e,_c.,z € (1,n) corresponds to a more compressed group
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representation, which indicates e,_., would be shared by a larger number of
group members. With the defined e,, and e; in hierarchical architecture, the user
u’s preference given item 4 can be estimated through:

Yui = €y * (ei)T - (eu—CO +ey—c1t+...+ eu—cn) . (ei—co +ei—c1+...+ ei—cn)T (4)

3.3 UGCN Recommender

As discussed above, the essential point for constructing a hierarchical architec-
ture is to extract multi-resolution collaborative signals and encode these infor-
mative signals into corresponding embeddings. To tackle this issue, we adopt the
idea of utilizing a hierarchical graph structure to enable generating diverse group-
level embeddings on different graph scales. In other words, we aim to gradually
compress the original user-item interaction graph into several group-level inter-
action graphs. Hence, a node in the compressed graph could represent a group
of similar users/items, and an edge in the compressed graph would indicate the
shared behavior of group members. Taking a step further, the node embedding
learned on diverse graph architectures of different scales can naturally capture
the corresponding diverse group-level collaborative signals shared among certain
group members. Following the analysis, we display the whole hierarchical recom-
mender construction in three parts: item/user hierarchies extraction (i.e., graph
architecture compressing), graph node embedding learning (i.e., multi-resolution
collaborative signal modeling), and diverse embedding integrating.

Item/user Hierarchies Extraction To reasonably explore item/user hierar-
chies and properly compress the original user-item interaction graph, we follow
the core point of collaborative filtering that similar users/items might exhibit
similar preferences. In other words, by merging the similar nodes in the finer
scaled graph into a group node in the coarser scaled graph, the generated di-
verse graph architectures could successfully reveal the user/item hierarchies re-
lationships. More importantly, the group node in a coarser scaled graph can
automatically exhibit the shared interest of those similar nodes in a finer scaled
graph. To simplify the discussion, we adopt the common pooling operation to
represent the process of compressing a finer graph into a coarser one, which can
be defined as:

G'(U',I',E") = Pooling(G(U, I, F)) (5)
, where G(U, I, E) and G'(U’, I, E’) is the finer scaled graph and coarser scaled
graph respectively. Expressly, to implement the pooling operation, we utilize
the following two steps: 1) group formation: assembling similar neighbors based
on the similarity calculation on 1-hop connections; 2) node merging: generating
a new group node based on the assembled members, where the edge of a new
group node is mainly determined by the common connections of similar nodes.
Meanwhile, a predefined ratio « is utilized to control the percentage of the nodes
selected for grouping, enabling the construction of more flexible hierarchical
architectures.
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Graph Node Embedding Learning After obtaining the graphs of diverse
scales, capturing the diverse collaborative signal in different graphs and learning
informative embeddings for each node in each structure become the essential
issue. To this end, we apply a graph convolution operation on graph architecture
to encode informative collaborative signals into node embeddings. Specifically,
the neighborhood aggregation proposed by LightGCN [8] is adopted to simplify
the whole convolutional calculation process, which can be represented as:

(k+1) _ k) 6
gv: NANIES (6)

NI . — 7

, where e( ) and e( ) respectively denote the embedding of user v and item 7 gen-
erated after k convolutional operations. Meanwhile, AV, and V; denote the set of
items that are interacted by the user u and the set of users that interact with the
item 4, respectively. The symmetric normalization term 1/(1/|N;|+/|Ny|) follows
the design of standard GCN [13] to avoid the scale of embeddings increasing with
graph convolution operations. The final embeddings after operating m convolu-
tional operations can be computed as:

1 1 o~ &)
=D el i a= 3 e ®)
m mk:O

It is worth noticing that the graph convolution operations will be independently
implemented on each graph structure. The initialization for graph nodes will
only be applied to the original user-item interaction graph. Moreover, the initial
node embeddings in the coarser graph can be easily generated by the mean
embeddings of similar nodes in the finer graph that are selected and merged into
the corresponding group nodes.

Diverse Embedding Aggregation Following the multi-resolution collabora-
tive signal extraction process, properly propagating the extracted information
back to final embeddings is also crucial. Symmetric to pooling operation, we
utilize un-pooling operation to gradually restore the coarser scaled architecture
back to the finer ones:

G(U,I,E) = UnPooling(G'(U',I',E")) 9)

As a group-level node in a coarser scaled graph represents all of its group mem-
bers’ collaborative interaction patterns, the collaborative information contained
in the group node is directly copied to its group members in the finer scaled
graph. In this case, the group-level collaborative signal obtained in a coarser
scaled graph can successfully be propagated back to the corresponding group
members.
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UGCN Architecture and Model Training To better exhibit the proposed

UGCN architecture, we develop a 3-levels UGCN recommender depicted in Fig-
ure 1.
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Fig. 1. An illustration of a 3-levels UGCN Recommender. In this example, we hi-
erarchically stack the original user-item interaction graph with two compact graphs
generated by Pooling operations. Then, simplified GCN layers are implemented to ex-
tract the multi-resolution collaborative signals at three graphs of different scales. The
Un-pooling operations would gradually restore the finer graph architecture and inte-
grate the informative signals into final user/item embeddings.

To properly train the UGCN recommender, we employ the BPR loss, a pair-
wise loss that aims to enlarge the prediction differences among positive and
negative samples. The final loss function for UGCN is presented below:

Tuij = Yui — Yuj (10)
M
Lppr=— Z Z Z Ino(Zui;) + AllO|| (11)
u=14ieN, j¢N,

, where o denotes the activation function, A controls the L2 regularization
strength, and @ represents the parameter vector of the UGCN model. As the
only trainable parameter is the initial embedding of the user-item interaction
graph, the © in Equation (11) equals the embedding matrix E.

3.4 Theoretical analysis for UGCN Recommender

In this section, we offer in-depth analyses of the UGCN Recommender, aiming to
answer the question: how does this hierarchical recommender benefit real-world
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recommendation problems? To answer this question, we utilize a 3-levels UGCN
recommender depicted in Fig. 1 as an example.

Given a user u with his/her initial embedding e,o, the final embedding e,
produced by a 3-levels UGCN model can be represented as:

ew = GCNGF(GCNG (ewo) + GONF(GON} (1) + GON3 (eu2)))  (12)
eu1 = Pooling(GCNE (ew)) (13)
euz = Pooling(GC N7 (eu1)) (14)

, where GCN]* represents operating m graph convolutional layers on the graph

structure at (n + 1) — th level of the hierarchical graph model. For example,
GCN¢ indicates operating two graph convolution layers on the original user-
item interaction graph. Meanwhile, e,; and e,s represent the computed initial
embedding of the merged group node in graph architectures at 2 —nd and 3 —rd
level of hierarchical models, respectively. Moreover, the Un-pooling operation is
discarded in the whole calculation as the Un-pooling operation simply copies
the learned group node embedding back to its corresponding group members.
By properly expanding the equation (12), we can finally obtain:

ew = GONj(eu) + GONZ(GCN{ (ey1)) + GCNE(GONE(GCN3(ewz))) (15)

€y —c0 €u—cl Cu—c2

As the final embedding generated by the UGCN recommender can be inter-
preted as the hierarchical structure discussed in Section 3.2, we hence adopt the
simplified expressions in our following discussion.

Formally, for user u, the gradient of the BPR loss w.r.t. the trainable em-
bedding e, is as follows:

—Tuij

O0BPR —e 0
ox E E — - Tuii — A 16
e i€EN jEN L4 e ®us ey (16)

According to the equation (10), &,; can be further expanded as follows:

‘%uij = (euch + Cu—cl + euch) : [(eich + €i—c1t+ ei*CZ) - (ejch + ejfcl + ej7c2)]
(17)

As presented above, the initial group embeddings e,; and e,z in equation (15)

can be calculated through a linear model contains e, we can finally obtain:

%’uojuij =a-[(ei—co — €j—co) + (€i—c1 — €j—c1) + (€i—c2 — €j—c2)] (18)
, where « is the constant number computed through the partial derivatives of
(eu—co + €u—c1 + €y—c2) with respect to e,g. Based on the equation (15) and
(18), it is apparent that the U-shape hierarchical model can contain valuable
group-level differences information during the model training process. Hence,
we believe the UGCN model can produce more informative embeddings and
generate better predictions.
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4 EXPERIMENTS

We conduct experiments on three public million-size datasets to answer the
following research questions.

— Q1: How does the UGCN recommender perform compared to state-of-the-
art models? Does UGCN achieve higher accuracy?

— Q2: Are multi-resolution collaborative signals helpful for generating more
personalized embedding? Can our model produce better recommendations?

— Q3: How do different hyper-parameter settings (e.g., the number of model’s
hierarchical levels) affect the recommendation performance?

4.1 Experimental Settings

Datasets We conduct experiments on three public million-size datasets, namely
Movielens 1M (Mllm), Gowalla, and Yelp2018. The detailed dataset statistics
are shown in Table 1. For each dataset, we randomly split 80% of each user’s
interactions to construct the training set, while the remainder forms the test set.
For each training set, we randomly select 10% of interactions as a validation set
to tune hyperparameters. Moreover, according to our pair-wise BPR training
strategy, each interaction of an individual user in the training set is treated as a
positive sample, and the corresponding negative one will be randomly sampled
from the non-interacted items of the same user.

Table 1. Statistics of experimental datasets.

Statistics| Users | Items |Interactions|Density

| Users | Items | |

Mlim | 6022 | 3043 | 995,154 |0.05431
Gowalla |29, 858|40, 981] 1, 027, 370 |0.00084
Yelp2018|31, 66838, 048] 1, 561, 406 |0.00130

Evaluation Metrics To evaluate different aspects of Top@K recommendation
results for the proposed model and existing ones, we first adopt Recall@K and
NDCGG@K [10] to compare the overall prediction accuracy. Then, we apply an
additional publicly accepted method (i.e., Coverage [3]) to assess the person-
alization performance. As coverage demonstrates the percentage of items that
have been recommended to users, we adopt the following equations to compute
both recommendation coverage R — C'overage and hit coverage H — Coverage:

R — CO’Ue""age(K) = N’recommended/N

19
H — Coverage(K) = Nyt /N (19)

, where Niccommended and Ng;x imply the number of different items that have
been recommended and hit in one or more users’ top@K list, respectively; N is
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the number of total items. According to common sense, users are always pleased
with mixed recommendation results rather than merely recommending the same
items|[3]. Therefore, we aim to pursue a higher Coverage value.

Comparison Methods We compare UGCN with several state-of-the-art rec-
ommendation models.

— MF-BPR [21]: This model presented a generic optimization criterion BPR-
Opt for personalized ranking.

— NeuMF [9]: This is a state-of-the-art neural Collaborative Filtering model
that used implicit user-item interaction.

— HHMF [16]: This is a recent proposed hidden hierarchical recommender
which learned from the user-item scoring record and does not need prior
knowledge.

— NGCF |[26]: This is a state-of-the-art GCN-based model which integrated
the user-item interaction into the embedding process through the graph con-
volution operation.

— NIA-GCN [23]: This is a newly proposed GCN-based model which explic-
itly exploits the user-user and item-item relationships through a pairwise
neighborhood aggregator.

— LR-GCCEF [4]: This is a state-of-art GCN-based model which utilizes a
residual network structure and linear graph convolution operations to alle-
viate the over-smoothing problem.

— LightGCN [8]: This is a newly proposed GCN-based model that simpli-
fies the design of graph convolution operation and only includes neighbor
aggregation in convolution operations.

— SGL [27]: This is a newly proposed Graph Training Strategy which imple-
ments on the Light GCN model and achieves competitive performance.

Parameter Settings The embedding size is fixed to 64 for all models, and the
embedding parameters are initialized with the Xavier method [6]. The default
learning rate is 0.002, and the default mini-batch size is 2048. The depth of
hierarchical architecture is tested in the range of [2,3,4]. The number of graph
convolution operations is tested from 1 to 3, and the predefined ratio « is val-
idated in the range of [0.01 0.99]. The early stopping and validation strategies
are the same as Light GCN. The Adam [12] optimizer is also employed and used
in a mini-batch manner. Moreover, we also adopt dropout mechanisms on every
GCN layer to mitigate over-fittingm and the default dropout rate is 0.6.

Implementation Details In the group formation step, we adopt the cosine
function to derive the similarity among a pair of users (or items). For node merg-
ing in pooling operation, we mainly retain the common interactions of similar
users in the same group and randomly delete some individual behaviors. Mean-
while, it is worth pointing out that the pooling operation would run separately
and steply on user and item nodes. Moreover, the only trainable parameters of
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the UGCN recommender are the initial user/item embeddings of the original
user-item interaction graph. For the implementation of the baseline models, the
default training strategies and hyperparameters settings from the corresponding
referenced papers are followed.

4.2 Prediction Accuracy Comparison (QR1)

To evaluate the overall prediction accuracy, we test Recall@20 and NDCG@20
among all different models. The final results are presented in Table 2.

Table 2. The comparison of overall performance among UGCN and baseline methods.

Data- l Mllm ‘ Gowalla ‘ Yelp2018
sets  |Recall@20 NDCG@20|Recall@20 NDCG@20|Recall@20 NDCG@20

MF-BPR | 0.2101 0.1787 0.1291 0.1109 0.0433 0.0354
NeuMF 0.2297 0.1886 0.1399 0.1212 0.0451 0.0363
HHMF 0.2311 0.2025 0.1477 0.1283 0.0498 0.0384
NGCF 0.2513 0.2511 0.1570 0.1327 0.0579 0.0477

NIA-GCN| 0.2359 0.2243 0.1359 0.1358 0.0599 0.0491

LR-GCCF| 0.2231 0.2124 0.1519 0.1358 0.0561 0.0343

Light GCN| 0.2576 0.2427 0.1830 0.1554 0.0649 0.0530

SGL 0.2700 0.2547 0.1781 0.1501 0.0674 0.0553

UGCN | 0.2774  0.2633 | 0.1876  0.1587 | 0.0689  0.0561
Y%lmprov.| +2.7%4% +3.38% | +2.51% +2.12% | +2.23% +1.45%

Our UGCN recommender consistently outperforms the baseline methods on
all datasets. In particular, UGCN achieves 2.74%, 2.51%, and 2.23% improve-
ment of recall@20 over the best baseline on Mllm, Gowalla, and Yelp2018, re-
spectively. Meanwhile, the performance of UGCN on NDCG@20 is also outstand-
ing, presenting 3.38%, 2.51%, and 1.45% enhancements. Moreover, compared to
MF-based and neural-based models, the significant improvements among GCN-
based models reveal the superiority of GCNs in handling embedding learning
tasks, which is consistent with the discussion in Section 2. The results also
demonstrate that the HHMF model and UGCN recommender perform better
than basic-MF and existing GCN-based models, respectively, confirming the ef-
fectiveness of exploring users/items hierarchies in recommender systems. In con-
trast to the HHMF model, the better performance of UGCN demonstrates that
modeling the diverse resolution collaborative signal would be a better strategy
than merely focusing on exploring user/item hierarchies separately. Moreover,
since a denser dataset would result in more accurate user/item grouping and
lead to more precise group-level signal extraction, this would explain why the
most significant improvement is achieved in the ML1m dataset.
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All the analyses above exhibit that our proposed UGCN recommender out-
performs all the state-of-the-art models and achieves the highest recommenda-
tion accuracy.

4.3 Personalization Comparison (QR?2)

As discussed above, we adopt Coverage [3] to demonstrate whether integrating
diverse group-level collaborative signals can lead to better recommendations.
Specifically, we adopt the state-of-the-art models LightGCN [8] and SGL [27]
as our compared baseline owing to their competitive results displayed in Table
2. Moreover, we test three top@QK recommendation cases, and the comparison
results of Coverage among three models are presented in Fig. 2.

le-1 Milm le-1 Gowalla 1e-1 Yelp2018

-y

o —— o o
H e 2 g
4 .- = 4
$6.95 $585 435
] ° °
b 9 S
%6.25 SF ughecn - T 445 %320
SGL
-4 UGCN
20 40 60 80 20 40 60 80
Top@K Top@K Top@K
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Fig. 2. Coverage Comparison Results

Based on the results in Fig.2, UGCN achieves higher R — Coverage and
H — Coverage in all datasets. Taking the worst-case (top@20) as an example,
R — Coverage for UGCN are 57.34%, 42.20%, and 34.39%, which indicate the
corresponding 1.60%, 4.95% and 2.81% improvement on three datasets compared
to the best baseline. Similarly, H — C'overage results also achieve relatively sig-
nificant increases. Meanwhile, it is worth noticing that the Coverage result of
SGL on the Yelp2018 dataset is under-performed by those of Light GCN, even
though SGL obtains a higher recommendation accuracy according to Table 2.
These results demonstrate that higher recommendation accuracy might not re-
veal better recommendations. In comparison, the proposed UGCN recommender
obtains higher recommendation accuracy and higher coverage simultaneously,
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indicating the UGCN’s superiority. Considering the difference between UGCN
and those baseline models, we could answer Q2 by concluding that integrating
multi-resolution collaborative allows recommender systems to precisely capture
user/item personalized preferences and leads to better recommendations.

4.4 Hyper Parameter Analysis (QR3)

The above discussion indicates integrating diverse collaborative signals will ben-
efit the recommender system. Nevertheless, it is still unclear how the number
of model’s hierarchical levels impact the recommendation performance? To this
end, we conducted the comparison experiments on Mllm and Gowalla. Owing to
the limited space, we discard the results on Yelp2018, but the discussion would
be applicable for other datasets. The results are presented in Fig. 3.
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Fig. 3. Hyper-parameters Comparison Results

As shown in Fig. 3, the best performance is achieved when the number of
the model’s hierarchical levels are set to two and three on Mllm and Gowalla,
respectively. Compared to the one-level UGCN model (i.e., original LightGCN,
which does not contain hierarchical architecture), the huge improvement con-
firms the necessity of modeling diverse collaborative signals. Meanwhile, the dif-
ferent optimal results on different datasets reveal that a fair number of UGCN’s
hierarchical levels are always needed to be optimized on specific datasets during
training.

5 Conclusion

This paper proposes a graph convolutional network-based hierarchical recom-
mender, namely UGCN, on a bipartite graph to capture diverse group-level
collaborative signals and produce better recommendation predictions. Precisely,
the proposed model utilizes a U-shaped architecture to gradually compress the
original user-item interaction graph into smaller graphs by merging similar nodes
together. Then, simplified graph convolutional operations can easily extract di-
verse group-level collaborative signals from compressed graphs. After that, those
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learned informative signals would be projected back to the final user/item em-
beddings adaptively. Extensive and comprehensive experiments on three public
datasets demonstrate that the UGCN recommender achieves significant overall
prediction improvements over state-of-the-art models with better recommenda-
tions simultaneously.
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