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Abstract. Graph Neural Networks (GNNs) exploit signals from node
features and the input graph topology to improve node classification
task performance. Recently proposed GNNs work across a variety of ho-
mophilic and heterophilic graphs. Among these, models relying on poly-
nomial graph filters have shown promise. We observe that polynomial
filter models need to learn a reasonably high degree polynomials without
facing any over-smoothing effects. We find that existing methods, due to
their designs, either have limited efficacy or can be enhanced further. We
present a spectral method to learn a bank of filters using a piece-wise
polynomial approach, where each filter acts on a different subsets of the
eigen spectrum. The approach requires eigendecomposition only for a few
eigenvalues at extremes (i.e., low and high ends of the spectrum) and of-
fers flexibility to learn sharper and complex shaped frequency responses
with low-degree polynomials. We theoretically and empirically show that
our proposed model learns a better filter, thereby improving classifica-
tion accuracy. Our model achieves performance gains of up to ∼6% over
the state-of-the-art (SOTA) models while being only ∼2x slower than
the recent spectral approaches on graphs of sizes up to ∼169K nodes.

Keywords: Graph Neural Networks · Representation Learning · Poly-
nomial Filtering.

1 Introduction

We are interested in the problem of classifying nodes in a graph where a graph
with features for all nodes, and labels for a few nodes are made available for
learning. Inference is done using the learned model for the remaining nodes (aka
transductive setting). Graph Neural Networks (GNNs) perform well on such
problems [1]. Most GNNs predict a node’s label by aggregating information from
its neighbours in a certain way, making them dependent on some correlation
between the structure and the node labels1. For example, in the simplest case,
? Equal contribution. Work done while author was at Microsoft Research India
1 Characterizing the correlation between the graph structure and node features/labels
is an active area of research. Several metrics have been proposed including edge
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GNNs work well when the node and its neighbours share similar labels. However,
the performance can be poor if this criterion is not satisfied. Recently, several
modeling approaches have been proposed to build/learn robust GNN models.
Some modify the aggregation mechanism [4,5,3], while others propose to estimate
and leverage the label-label compatibility matrix as a prior [6].

More recent approaches have tackled this problem from a graph filter learn-
ing perspective [7,8,38,37,32,39]. With eigenvalues having frequency interpreta-
tions [26], one or more filters (i.e., a bank of filters) that selectively accentuates
and suppresses various spectral components of graph signals are learned using
task-specific available information. The filtering operation enables learning bet-
ter node representation which translates to improved classification accuracy.

Designing effective graph filters is a challenging problem, and most recent
methods [10,8,38,37] suggest interesting ways to learn polynomial filters hav-
ing finite impulse response (FIR) characteristics. These models are efficient and
attractive, as they make use of local neighborhood (i.e., using sparse adjacency
matrix repeatedly) and do not require to pre-compute eigendecomposition, which
is expensive (when done over the entire spectrum, i.e., for all eigenpairs). Though
these models are able to learn better filters and give good performance gains,
they are still unable to learn richer and complex frequency responses, which
require higher-order polynomials. One key reason for their inability to learn ef-
fective high-order polynomials is that they only mitigate the over-smoothing
problem. This aspect of the problem becomes clear when we analyze a general
class of FIR filters (GFIR) and find that the over-smoothing problem exists
for the whole class, of which simplified GCN [16], GPR-GNN [8] and several
other models are special cases. We also find that while constraining the model
space of GFIR (e.g., [8]) helps to mitigate over-smoothing, it is still unable to
learn complex-shaped and sharper frequency responses. Considering this back-
ground, our interest lies in learning a bank of effective filters in spectral domain
to model complex shaped frequency responses, as needed for graphs with diverse
label correlations. Our contributions are:

1. We propose a novel piece-wise polynomial filtering approach to learn a filter
bank tuned for the task at hand. Since full eigendecomposition is expensive,
we present an efficient method that makes use of only a few extremal eigen-
pairs and leverages GPR-GNN to learn multiple filters. (While computing
the extremal eigenpairs does lead to an increased computational cost, we
show in A.9 that such a cost is indeed managable, i.e. the model is only ∼2x
slower than recent spectral SOTA methods.)

2. We analyze, theoretically and experimentally, the shortcomings of a general
class of FIR (GFIR) filters. We show that the proposed piece-wise polynomial
GNN (PP-GNN) solution is more expressive and is capable of modeling
richer and complex frequency responses.

homophily [13,5], node homophily [4], class homophily [27]. All these metrics show
that standard GNNs perform well when the graphs and node labels are positively
correlated.
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3. We conduct a comprehensive experimental study to compare PP-GNN with
a wide range of methods (∼20), covering both spatial and spectral convolu-
tion based methods on nearly a dozen datasets. Experimental results show
that PP-GNN performs significantly better, achieving up to ∼6% gains on
several datasets.

2 Related Work

Graph Neural Networks (GNNs) have become increasingly popular models for
semi-supervised classification with graphs. [11] set the stage for early GNN
models, which was then followed by various modifications [12,1,9,2] and im-
provements along with several different directions such as improved aggregation
and attention mechanisms [9,2,3], efficient implementation of spectral convolu-
tion [12,16], incorporating random walk information [15,13,14], addressing over-
smoothing [15,10,13,14,28,29,30], etc.

Another line of research explored the question of where GNNs help. The key
understanding is that the performance of GNN is dependent on the correlation
of the graphs with the node labels. Several approaches [13,5,31] considered edge
homophily and proposed a robust GNN model by aggregating information from
several higher-order hops. [3] also considered edge homophily and mitigated the
issue by learning robust attention models. [4] talks about node homophily and
proposes to aggregate information from neighbours in the graph and neighbours
inferred from the latent space. [6] proposes to estimate label-label compatibility
matrix and uses it as a prior to update posterior belief on the labels.

Recent approaches motivated by the developments in graph signal process-
ing [25], focus on learning graph filters with filter functions that operate on
the eigenvalues of the graph directly or indirectly, adapting the frequency re-
sponse of graph filters for the desired task. [7] models the filter function as
an attention mechanism on the edges, which learns the difference in the pro-
portion of low-pass and high-pass frequency signals. [8] proposes a polynomial
filter on the eigenvalues that directly adapts the graph for the desired task.
[32] decompose the graph into low-pass and high-pass frequencies, and define
a framelet based convolutional model. [38] propose to learn graph filters us-
ing Bernstein approximation of arbitrary filtering function. [37] suggest to learn
adaptive graph filters for different feature channels and frequencies by stacking
multiple layers. Our work is closely related to these lines of exploration. All these
works still need high-degree polynomials when sharper frequency responses are
needed; however, though improved performance is observed and over-smoothing
is mitigated, further improvements seem possible. Another class of Infinite Im-
pulse Response (IIR) filters have been proposed to learn complex filter responses.
ARMA [39] achieves this by using auto-regressive moving average, but empiri-
cally have been found to have limited effectiveness. Implementing precise ARMA
filters for graphs is a challenging problem and has high computation costs. [39]
proposes several approximations to mitigate the issues, but these come with
limited efficacy. In our work, we propose to learn a filter function as a sum of
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polynomials over different subsets of the eigenvalues (in essence, a bank of filters)
by operating directly in the spectral domain, enabling design of effective filters
to model task-specific complex frequency responses with compute trade-offs.

3 Problem Setup and Motivation

We focus on the problem of semi-supervised node classification on a simple graph
G = (V, E), where V is the set of vertices and E is the set of edges. Let A ∈
{0, 1}n×n be the adjacency matrix associated with G, where n = |V| is the
number of nodes. Let Y be the set of all possible class labels. Let X ∈ Rn×d be
the d-dimensional feature matrix for all the nodes in the graph. Given a training
set of nodes D ⊂ V whose labels are known, along with A and X, our goal is
to predict the labels of the remaining nodes. Let AI = A + I where I is the
identity matrix. Let DAI

be the degree matrix of AI and Ã = D
−1/2
AI

AID
−1/2
AI

.
Let Ã = UΛUT be the eigendecomposition. The spectral convolution of X on
the graph A can be defined via the reference operator Ã and a general Finite
Impulse Response (FIR) filter ([40]), parameterized by Θ as:

Z =

k∑
j=1

ÃjXΘj (1)

The term, ÃjX uniformly converges to a stationary value as the value of j
increases, making the node features indistinguishable (often referred to as the
problem of over-smoothing), thereby reducing the importance of the correspond-
ing term for the task at hand. We formalize the argument via commenting on
the Dirichlet energy of the higher-order terms [41]. Dirichlet energy reveals the
embedding smoothness with the weighted node pair distance. A smaller value is
highly related to over-smoothing [42]. Under some conditions, the upper bound
of Dirichlet energy of higher terms is theoretically proved to converge to 0 in
the limit of infinite layers. In other words, all nodes converge to a trivial fixed
point in the embedding space and hence do not contribute to the discriminative
signals. This is formalized as follows:
Proposition 3.1: The upper bound of Dirichlet energy for the higher-order
terms in the general FIR model exponentially decreases to 0 with the order,
k. Formally, with S as any graph shift operator (in our case, the normalized
adjacency), and Θk be the set of parameters, indexed by k:

E(SkXΘk) ≤ (1− λ)2ksΘk
E(X)

where, λ is the positive eigenvalue of the graph Laplacian ∆ that is closest to 0;
sΘk

is the largest singular value of Θk. We relegate the proof of the corollary as
well as the formal definition of a few terms in section A.3 of the supplementary
material.

The family of general FIR filters is ubiquitous and gives rise to various other
filter families (eg. polynomial) simply by placing constraint on the form of pa-
rameterization. We experiment with placing simple constraints on the bare GFIR
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model in section A.7 of supplementary and observe that while constraining helps
improving the performance, it does not help in learning complex responses. It
is not difficult to see that the models of [12],[8], etc. are just instantiations of
the GFIR family. Particularly, by restricting Θj = αjI, we recover the linear
model (without MLP) of [8], which can now be interpreted as the polynomial
filter function h operating on the eigenvalues, in the Fourier domain [25,8] as,

Z =

k∑
j=1

αjÃ
jX = Uh(Λ)UTX (2)

with h : R→ R is defined as h(λ; α) =
∑k
i=1 αiλ

i where αi’s are coefficients of
the polynomial, k is the order of the polynomial and λ is any eigenvalue from Λ.
h() is applied element-wise across Λ in Eq.2. In this process, the filter function
is essentially adapting the graph for the desired task at hand.

It is well-known that polynomial filters can approximate any graph filter
[26,25]. Since polynomial filters are a class of the GFIR filter family, they inherit
the same problem of over-smoothing as the order of the polynomial becomes
higher. [8] show that they achieve the diminishing of the contribution of higher-
order terms by showing that their coefficients converge to zero during training.
While this mitigates the over-smoothing problem, use of lower-order polynomials
results in an imprecise approximation when the dataset requires a complex spec-
tral filter for obtaining a superior performance, which we will show is the case
for certain datasets (See Figure 1 and supplementary’s A.6). Empirical results
demonstrating the key points discussed in this section: a) smoothening of the
higher-order terms (can be found in Figure 5a of the supplementary material)
and b) their effect on the test performance on a few datasets (can be found in
Figure 5b and 5c of supplementary material). These problems indicate the need
for a method that can approximate arbitrarily complex filters better and at the
same time mitigate the effects of over-smoothing.

4 Proposed Approach

We propose to learn a bank of polynomial filters with each filter operating on
different parts of the spectrum, taking task-specific requirements into account.
We show that our proposed filter design can approximate the latent optimal
graph filter better than a single polynomial, and the resultant class of learnable
filters is richer.

4.1 Piece-wise Polynomial Filters

We start with the expression (2) for node embedding rewritten with an MLP
network transforming input features, X, :

Z =

n∑
i=1

h(λi)uiu
T
i Zx(X;Θ) (3)
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where ui is the eigenvector corresponding to the eigenvalue, λi, and Zx(X;Θ)
is an MLP network with parameters Θ. Our goal is to learn a filtering function,
h(λ) jointly with MLP network, using which we compute the node embedding,
Z. We model h(λ) as a piece-wise polynomial or spline function where each poly-
nomial is of a lower degree (e.g., a cubic polynomial). We partition the spectrum
in [−1, 1] (or [0, 2] as needed) into contiguous intervals and approximate the de-
sired frequency response by fitting a low degree polynomial in each interval. This
process helps us to learn a more complex shaped frequency response as needed
for the task. Let S = {σ1, σ2, . . . , σm} denote a partition of the spectrum, con-
taining m contiguous intervals and hi,ki(λ; αi) denote a ki-degree polynomial
filter function defined over the interval σi (and 0 elsewhere) with polynomial
coefficients αi. We define piece-wise polynomial GNN (PP-GNN) filter function
as:

h(λ) =
∑
σi∈S

hi,ki(λ; αi) (4)

and learn a smooth filter function by imposing additional constraints to maintain
continuity between polynomials of contiguous intervals at different endpoints
(aka knots). This class of filter functions is rich, and its complexity is controlled
by choosing intervals (i.e., endpoints and number of partitions) and polynomial
degrees. Given the filter function, we compute the PP-GNN node embedding
matrix as:

Z =
∑
σi∈S

Uih(λσi
)UT

i Zx(X;Θ) (5)

where Ui is a matrix with columns as eigenvectors corresponding to eigenvalues
that lie in σi and h(λσ) is the diagonal matrix with diagonals containing the
hi evaluated at the eigenvalues lying in σi. Thus, the node embedding, Z, is
computed as a sum of outputs from a bank of polynomial filters with each filter
operating over a spectral interval, σi.

4.2 Practical and Implementation Considerations

The filter function (5) requires computing full eigendecomposition of Ã and is
expensive, therefore, not scalable for very large graphs. We address this problem
by performing eigendecomposition only for a few extreme values (i.e., at low and
high ends of the spectrum) for sparse matrices, for which efficient algorithms exist
[43] with corresponding off-the-shelf implementations. The primary motivation
is that many recent works including GPR-GNN investigated the problem of
designing robust graph neural networks that work well across homophilic and
heterophilic graphs, and, they found that graph filters that amplify or attenuate
low and high-frequency components of signals (i.e., low-pass and high-pass filters)
are critical to improving performance on several benchmark datasets. However,
there is still one question: how do we extract signals from the remaining (middle)
portion of the spectrum, and that too efficiently? We answer this question as
follows. Using the observation that the GPR-GNN method learns a graph filter
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but operates on the entire spectrum by sharing the filter coefficients across the
spectrum, our proposal is to use an efficient variant of (4) as:

h̃(λ) = ηl
∑
σi∈Sl

h
(l)
i (λ; γ

(l)
i ) + ηh

∑
σi∈Sh

h
(h)
i (λ; γ

(h)
i ) + ηgprhgpr(λ; γ) (6)

where Sl consists of partitions over low-frequency components, Sh consists of
partitions over high-frequency components, the first and second terms fit piece-
wise polynomials2 in low/high-frequency regions, as indicated through super-
scripts. We refer PP-GNN models using only filters corresponding to the first
and second terms alone in (6) as PP-GNN (Low) and PP-GNN (High), respec-
tively. We extract any useful information from other frequencies in the middle
region by adding the GPR-GNN filter function, hgpr(λ; γ) (the final term in 6),
which is computationally efficient. Since hgpr(λ; γ) is a special case of (4) and
the terms in (6) are additive, it is easy to see that (6) is same as (4) with a modi-
fied set of polynomial coefficients. Furthermore, we can control the contributions
from each term by setting or optimizing over hyperparameters, ηl, ηh and ηgpr.
Thus, the proposed model offers richer capability and flexibility to learn complex
frequency response and balance computation costs over GPR-GNN. Please see
Section A.3 for implementation details.

Model Training. Like GPR-GNN, we apply Softmax activation function
on (5) and use the standard cross-entropy loss function to learn the sets of poly-
nomial coefficients (γ) and classifier model parameters (Θ) using labeled data.
To ensure smoothness of the learned filter functions, we add a regularization
term that penalizes squared differences between the function values of polyno-
mials of contiguous intervals at each other’s interval end-points. More details
can be found in the supplementary material (A.3).

Discussion. In our model (4), we alleviate the over-smoothing problem using
low-order polynomials, and learning complex and sharper frequency responses
is feasible as we approximate higher-order polynomial functions effectively us-
ing several low-order piece-wise polynomials. However, this comes with eigen-
decomposition compute cost for a few (k) extreme eigenvalues, but is control-
lable by choosing k in an affordable way3. We observe this cost is (one time)
pre-training cost and can be amortized over multiple rounds of model training
required for the optimization of hyperparameters. Also, we need to compute
each filter specific embedding with non-local eigen-graphs (via the operations,
UiHi(γi)U

T
i Zx(X;Θ)); thus, we lose (spatial) local neighborhood property of

conventional methods like GPR-GNN. We compute node embeddings afresh
whenever the model parameters are updated, thereby incurring an additional
cost (over GPR-GNN) of O(nkL) where k and L denote the number of selected
low/high eigenvalues and classes, respectively. We conduct a comprehensive ex-

2 For brevity, we dropped the polynomial degree dependency.
3 Most algorithms for this task utilize Lanczos’ iteration, convergence bounds of which
depends on the input matrix’ spectrum [34,35], which although have superlinear
convergence, but are observed to be efficient in practice.
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perimental study to assess the time taken by our method, compare against other
state-of-the-art methods and present our findings in the experiment section.

4.3 Analysis

This section is arranged as follows: (a) Theorem 1 establishes superior capabili-
ties of our model in approximating arbitrary filters than a standard polynomial
filter; (b) Theorem 2 demonstrates the new space of filters that our model learns
from, each region of which induces a controllable, strong bias towards certain
parts of the spectrum while at the same time has dimension of the same order
as the corresponding polynomial family.

Theorem 1. For any frequency response h∗, and an integer K ∈ N, let h̃ :=
h + hf , with hf having a continuous support over a subset of the spectrum,
σf . Assume that h and hf are parameterized by independent K and K ′-order
polynomials, p and pf , respectively, with K ′ ≤ K. Then there exists h̃, such
that min ‖h̃ − h∗‖2 ≤ min ‖h − h∗‖2, where the minimum is taken over the
polynomial parameterizations. Moreover, for multiple polynomial adaptive filters
hf1 , hf2 , ..., hfm parameterized by independent K ′-degree polynomials with K ′ ≤
K but having disjoint, contiguous supports, the same inequality holds for h̃ =
h+

∑m
i=1 hfi .

For a detailed proof please refer to A.3 of the supplementary. We also con-
ducted an experiment to illustrate the main conclusion of the above theorem in
Section A.2 of the supplementary material.

Next, we note that since an actual waveform is not observed in practice and
instead, we estimate it by optimizing over the observed labels via learning a
graph filter, we theoretically show that the family of filters that we learn is a
strict superset of the polynomial filter family. The same result holds for the
families of the resulting adapted graphs.

Theorem 2. Define H := {h(·) | ∀ possible K-degree polynomial parameteriza-
tions of h} to be the set of all K-degree polynomial filters, whose arguments are
n×n diagonal matrices, such that a filter response over some Λ is given by h(Λ)
for h(·) ∈ H. Similarly H′ := {h̃(·) | ∀ possible polynomial parameterizations of
h̃} is set of all filters learnable via PP-GNN , with h̃ = h+hf1 +hf2 , where h is
parameterized by a K-degree polynomial supported over entire spectrum, hf1 and
hf2 are localized adaptive filters parameterized by independent K ′-degree polyno-
mials which only act on top and bottom t diagonal elements respectively, with
t < n/2 and K ′ ≤ K; then H and H′ form a vector space, with H ⊂ H′. Also,
dim(H′)
dim(H) = K+2K′+3

K+1 .

Corollary 1. The corresponding adapted graph families G := {Uh(·)UT |∀h(·) ∈
H} and G′ := {Uh̃(·)UT |∀h̃(·) ∈ H′} for any unitary matrix U form a vector
space, with G ⊂ G′ and dim(G′)

dim(G) = K+2K′+3
K+1 .
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The above theorem can be trivially extended to an arbitrary number of adap-
tive filters with arbitrary support. The presence of each adaptive filter induces
a bias in the model towards learning a bank of filters that operate only on the
corresponding support. Since the number of filters and their support sizes are
hyperparameters, tuning them offers control and flexibility to model richer fre-
quency responses over the entire spectrum. Thus, our model learns from a more
diverse space of filters and the corresponding adapted graphs. The result also
implies that our model learns from a space of filters that is only O(1)-fold greater
than that of polynomial filters4. Note that learning from this diverse region is
feasible. This observation comes from the proofs of Theorem 4.2 and Corollary
4.2.1 (A.3 and A.3 in supplementary). Using the localized adaptive filters with-
out any filter with the entire spectrum as support results in learning a set of
adapted graphs, Ĝ. This set is disjoint from G, with G′ = G ⊕ Ĝ. We conduct
various ablative studies where we demonstrate the effectiveness of learning from
Ĝ and G′.

Our model formulation is a generalization of the formulation by [8], and we
show in Section A.3 of the supplementary material by extending their analysis to
our model that it still inherits their property of mitigating oversmoothing effects
when high degree polynomial is used. Our experiments show that we are able to
obtain superior performance without needing the higher-order polynomials.

4.4 Comparison against other Filtering Methods

General FIR filter are a generalization of the polynomial filter family and thus
a precursor to the models based on the latter. As per the study conducted in
section A.7 of the supplementary, constraining the model is required to obtain
better performance. Restricting to polynomial filters can be seen as having an
implicit regularization on the same and we also empirically observe that such a
restriction (restricting to polynomial filters) gives much better performance than
constraining GFIR (see 5.1 and A.7) by simpler regularization methods such as
L2 and/or dropout. We have also shown in theorem 2 that PP-GNN increases
the space of graph filters (over GPR-GNN) and we observe in 5.1 that this in-
crease in graph space results in an increased performance, over other polynomial
filter methods. Thus, it requires a careful balance of the constraints imposed on
the filter family, while also appropriately increasing the graph space to obtain
better performance. A comprehensive study of this balance is beyond the scope
of this work and we leave that as future work. Below, we first show the different
ways of constraining the space (via polynomial filters) and compare them against
PP-GNN.

Polynomial filters are a class of filters constructed and evaluated from poly-
nomials. These filters can be constructed via multiple bases (for instance mono-
mial, Bernstein) in the polynomial vector space. APPNP, GPR-GNN, and
BernNet are all instances of polynomial graph filters defined in different bases

4 We leave the formal bias-variance analysis for adapted graph families as future work.
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and with different constraints. Below, we illustrate the differences between these
three methods and also discuss the shortcomings of each of them.

APPNP: One of the early works, APPNP [10], can be interpreted as a
fixed polynomial graph filter that works with monomial basis. The polynomial
coefficients correspond to Personalised PageRank (PPR) [44]. The node embed-
dings are learnt by APPNP as described in A.8. The main shortcoming of this
method is the assumption that the optimal coefficients for the polynomial filter
(for all tasks) are PPR coefficients, which need not necessarily be the case.

GPR-GNN: GPR-GNN builds on APPNP by overcoming this shortcom-
ing by making the coefficients γk (see A.8) learnable. [8] identified that negative
coefficients allows the model to exploit high frequency signals required for bet-
ter performance on heterophilic graphs. GPR-GNN, like APPNP, uses the
monomial basis. The node embeddings are learnt by GPR-GNN as described
in A.8. While this method is an improvement over APPNP, adapting an arbi-
trary filter response which requires a high-order polynomial is difficult due to the
oversmoothing problem. GPR-GNN mitigates oversmoothing by showing that
the higher order terms’ coefficients uniformly converge to zero during training.
Mitigating the oversmoothing problem limits the complexity of the filter learnt,
and therefore making GPR-GNN ineffective at learning complex frequency re-
sponses.

BernNet: While oversmoothing is one shortcoming of GPR-GNN, Bern-
Net identified another shortcoming that GPR-GNN and other polynomial fil-
tering based methods can result in ill-posed solutions and face optimization
issues (converging to saddle points) by not constraining the filter response to
non-negative values. [38] proposed a model that learns a non-negative frequency
response, a constraint that can be easily enforced by modifying the learning prob-
lem from learning the coefficients of the monomial basis functions to learning
the coefficients of the Bernstein basis functions, since the latter are non-negative
in their standard domain. [38] argue that constraining coefficients to take on
non-negative values is required for stability and interpretability of the learned
filters and is the main reason for performance improvements. The node embed-
dings are learnt as described in A.8. Note that in the expression referenced,
θk(∀k) are learnable coefficients and are constrained to non-negative values. We
first replace 1

2K

(
K
r

)∑q
p=0

(
K−r
q−p

)(
r
p

)
(−1)p with αrq and then subsequently replace∑K

r=0 θrαrq with wq. Such an exercise was done to show that the filter defined
by BernNet does indeed fall into the class of polynomial filters. We tabulate
the important attributes of each of the polynomial filters described above in
Table 11 of the supplementary material.

All of these approaches run into the oversmoothing issue with an increase in
the degree of the polynomial filter (A.1 of supplmentary). PP-GNN, owing to its
piece-wise definition, can model more complex shaped responses better without
the need to increase the degree. Our proposed model only requires extremal
eigendecomposition (i.e. computing only the extreme eigenpairs), for which there
exists efficient algorithms to compute [45,46]. Further, as mentioned earlier, this
is a one time pre-training cost, that can be amortized over training multiple
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models for hyper-parameter tuning. We illustrate this through a comprehensive
empirical study in section A.9 of the supplementary material. In the next section,
we experimentally show the benefits of PP-GNN.

5 Experiments

We conduct extensive experiments to demonstrate the effectiveness and compet-
itiveness of the proposed method over standard baselines and state-of-the-art
(SOTA) GNN methods. We conduct ablative studies to demonstrate the use-
fulness of different filters and the number of eigenpairs required in PP-GNN.
We also compare the quality of the embeddings learned and the time to train
different models. We first describe our experimental setup along with baselines
and information on hyper-parameter tuning.

We evaluate our model on several real-world heterophilic and homophilic
datasets. We resort detailed descriptions of dataset statistics, preprocessing steps,
and baselines to the Appendix (A.4). We report the mean and standard deviation
of test accuracy over splits to compare model performance.

5.1 PP-GNN versus SOTA Models

Table 1: Results on a few heterophilic and homophilic datasets. GFIR-1 corre-
sponds to unconstrained setting. GFIR-2 corresponds to constrained setting. For
a more detailed comparison and description please refer to Appendix A.5

Squirrel Chameleon Cora Computer Photos
GFIR-1 36.50±1.12 51.71±3.11 87.93±0.90 78.39±1.09 89.26±1.00
GFIR-2 41.12±1.17 61.27±2.42 87.46±1.26 79.57±2.12 89.38±1.03

FAGCN [7] 42.59±0.79 55.22±3.19 88.21±1.37 82.16±1.48 90.91±1.11
APPNP [10] 39.15±1.88 47.79±2.35 88.13±1.53 82.03±2.04 91.68±0.62

LGC [22] 44.26±1.49 61.14±2.07 88.02±1.44 83.44±1.77 91.56±0.74
GPRGNN [8] 46.31±2.46 62.59±2.04 87.77±1.31 82.38±1.60 91.43±0.89
AdaGNN [37] 53.50±0.96 65.45±1.17 86.72±1.29 81.27±2.10 89.93±1.22
BernNET [38] 52.56±1.69 62.02±2.28 88.13±1.41 83.69±1.99 91.61±0.51
ARMA [39] 47.37±1.63 60.24±2.19 87.37±1.14 78.55±2.62 90.26±0.48
UFG [32] 42.06±1.55 56.29±1.58 87.93±1.52 80.01±1.78 90.20±1.41
PP-GNN 59.15±1.91 69.10±1.37 89.52±0.85 85.23±1.36 92.89±0.37

Heterophilic Datasets. We perform comprehensive experiments to show
the effectiveness of PP-GNN on several Heterophilic graphs and tabulate the
results in Table 5 in the Appendix (A.5). Datasets like Texas, Wisconsin, and
Cornell contain graphs with high levels of Heterophily and rich node features.
Standard non-graph baselines like LR and MLP perform competitively or better
on these datasets compared to many spatial and spectral-based methods. PP-
GNN offers significant lifts in performance with gains of up to ∼6%. The node
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features in datasets like Chameleon and Squirrel are not adequately discrimina-
tive, and significant improvements are possible via convolutions, as we compare
non-graph and graph-based methods in Table 5. Spatial GNN methods, in gen-
eral, offer improvements over non-graph counterparts. In specific, methods like
GCN, which also have a spectral connotation, show better performance on these
datasets. We observe from the Table that Spectral methods offer additional im-
provements over models like GCN. The difference in performance among spectral
methods majorly comes from their ability to learn better frequency responses of
graph filters. Our proposed model shows significant lifts over all the baselines
with gains up to ∼6% and ∼4% on the Squirrel and Chameleon datasets. These
improvements empirically support the efficacy of PP-GNN’s filter design.

Homophilic Datasets. The input graphs for these datasets contain infor-
mative signals, and one can expect competitive task performance from even basic
spatial-convolution based methods as observed in Table 7 present in Appendix
(A.5). We can see that spatial models are among the top performers for several
Homophilic datasets. Existing spectral methods marginally improve over spatial
methods on a few datasets. Not surprisingly, our PP-GNN model with effective
filter design can exploit additional discriminatory signals from an already rich
informative source of signals. PP-GNN offers additional gains up to 1.3% over
other baselines.

Due to space constraints we have shown a small subset of our results in
Table 1. For a more detailed comparison please refer to the Appendix A.5 section,
where we compare against more SOTA methods and on other datasets as well.

(a) Squirrel (b) Citeseer

Fig. 1: Learned filter responses of PP-GNN,GPR-GNN, and BernNet.

5.2 PP-GNN Model Investigation

We conducted several experimental studies to understand and illustrate how the
PP-GNN model works. Our studies include: (a) how does the frequency response
of PP-GNN look like?, (b) what happens when we learn only individual sub-filter
banks (e.g., PP-GNN (Low), PP-GNN(Low + GPR-GNN)? and (c) does PP-
GNN learn better embeddings?
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Frequency Response. In Figure 1a and 1b, we show the learned frequency
responses (i.e., h(λ)) of the overall PP-GNN model, GPR-GNN component of
PP-GNN (PP-GNN (GPR-GNN)), stand-alone (GPR-GNN) model and Bern-
Net model on the Squirrel and Citeseer datasets. For Squirrel (a heterophilic
dataset), we can observe that while GPR-GNN and BernNet learns the im-
portance of low and high-frequency signals, it is unable to capture their rela-
tive strengths/importance adequately, and this happens due to the restriction
of learning a single polynomial globally. PP-GNN learns sharper and richer re-
sponses at different parts of the spectrum, thereby improving classification ac-
curacy. For Citeseer (a homophilic dataset) we can observe that all the models
in comparison learn a smooth polynomial, GPR-GNN is not able to capture
the complex transition that can be seen at the lower end of the spectrum, while
BernNet is doing it some degree. This inability to capture the complex tran-
sition leads to a lower classification accuracy. A similar trend can be found on
two other datasets in A.6.

Quality of learned embeddings: We qualitatively assess the difference
in the learned embedding of PP-GNN, GPR-GNN and BernNet. Towards
this, we generated t-SNE plots of the learned node embeddings and visually
inspected them. From Figure 2a, 2b and 2c, we observe that PP-GNN discov-
ers more discriminative features resulting in discernible clusters on the Squirrel
dataset compared to GPR-GNN and BernNet, enabling PP-GNN to achieve
significantly improved performance.

(a) PP-GNN (b) GPRGNN (c) BernNet

Fig. 2: t-SNE plots of learned embeddings on the Squirrel dataset

5.3 Additional Experiments

We summarize a list of experiments that can be found in the supplementary
material. Studies on varying the number of eigenvectors used by PP-GNN and
the importance of MLP can be found in Section A.6. Analysis on the effect of
varying the order of GPR-GNN’s polynomial on performance is presented in
A.1. Experimental details for PP-GNN with boundary regularization is in A.3.
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6 Conclusion

Several recently proposed methods attempt to build robust models for diverse
graphs exhibiting different correlations between graph and node labels. We build
on the filter-based approach of GPR-GNN which can be extended further with
Generalized FIR models. This work proposed an effective polynomial filter bank
design using a piece-wise polynomial filtering approach. We combine GPR-
GNN with additional polynomials resulting in a bank of filters that adapt to
low and high-end spectrums using multiple polynomial filters. While our method
makes an unconventional choice of extremal eigendecomposition, it does help to
get improved performance, albeit with some additional but manageable cost. Our
experiments demonstrate that the proposed approach can learn effective filter
functions that improve node classification accuracy significantly across diverse
graphs. While our work shows merit, it is still founded upon the polynomial
formulation, and even though piecewise polynomial filters are more expressive
than conventional polynomial filters, they still retain the properties of the poly-
nomial filters locally. Hence, there is still room for even more expressive filter
formulations that are well motivated, and we leave their exploration as future
work.
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