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Abstract. Keyphrases can concisely describe the high-level topics dis-
cussed in a document, and thus keyphrase prediction compresses doc-
ument’s hierarchical semantic information into a few important repre-
sentative phrases. Numerous methods have been proposed to use the
encoder-decoder framework in Euclidean space to generate keyphrases.
However, their ability to capture the hierarchical structures is limited by
the nature of Euclidean space. To this end, we propose a new research
direction that aims to encode the hierarchical semantic information of a
document into the low-dimensional representation and then decompress
it to generate keyphrases in a hyperbolic space, which can effectively
capture the underlying semantic hierarchical structures. In addition, we
propose a novel hyperbolic attention mechanism to selectively focus on
the high-level phrases in hierarchical semantics. To the best of our knowl-
edge, this is the first study to explore a hyperbolic network for keyphrase
generation. The experimental results illustrate that our method outper-
forms fifteen state-of-the-art methods across five datasets.

Keywords: Keyphrase generation · Hyperbolic neural network · Hyper-
bolic attention mechanism.

1 Introduction

Keyphrase prediction is to automatically produce a set of representative phrases
that are related to the main topics discussed in a given document. Since keyphrases
(also referred to as keywords) can provide a high-level topic description of a doc-
ument, they are beneficial for a wide range of natural language processing (NLP)
tasks, such as information extraction [32], text summarization [33] and question
generation [30]. However, the performance of existing approaches is still far from
being satisfactory [21,16]. The main reason is that it is very challenging to de-
termine if a phrase or a set of phrases accurately capture the high-level topics
that are presented in a document.

Automatic keyphrase prediction models can be broadly divided into extrac-
tion and generation methods. In particular, traditional extraction methods can
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only extract present keyphrases that appear in a given document, while genera-
tion methods can generate both present keyphrases as well as absent keyphrases
that do not appear in a document.

Recently, the sequence-to-sequence (seq2seq) framework has been widely ap-
plied in the natural language generation tasks. CopyRNN [23] is the first to
employ the attentional seq2seq framework [29] with the copying mechanism [14]
to generate both present and absent keyphrases for a document. Following Copy-
RNN, several seq2seq-based keyphrase generation methods have been proposed
to improve the generation performance [6,36,41,34,8,38,1,37]. However, all these
existing keyphrase generation methods have been proposed to compress the se-
mantic information in a given document into a dense vector in Euclidean space,
assuming a flat geometry. Although these Euclidean representation models have
proved successful for the keyphrase generation task, they still suffer from an in-
herent limitation: their ability to capture hierarchical structures is bounded by
the nature of flat geometry of Euclidean space, as mentioned in recent work [27].

As a given document covers different topics and consists of many phrases
which could be keyphrases, it is critical to represent it into a hierarchical seman-
tic representation, facilitating the selection of the most representative keyphrases
related to the main topics at the highest level. Fig.1 shows the hierarchical re-
lations among different semantic levels of candidate keyphrases, which can be
regarded as the ideal keyphrase generation if viewing it from low-level (bound-
ary) to high-level (center) candidates. In Fig.1, the set of ideal keyphrases should
be KP = {cp1, cp2, cp3} at the highest level, covering three topics comprehen-
sively. If the set of predicted keyphrases is KP′={cp21, cp221}, it just provides a
local and low-level topic description of the second topic Topic2 only, ignoring the
other two topics and a part of the second topic. This example illustrates that
without an effective hierarchical semantic representation, the predicted kephrases
will not cover major topics and provide the high-level topic description. As men-
tioned in several existing studies [21,16,6,41,38], predicted keyphrases may fall
into a single topic and fail to cover all the main topics discussed in a document.
In summary, semantic hierarchical relations widely exist among keyphrases, but
existing keyphrase generation methods available in Euclidean space can not ef-
fectively capture semantic hierarchical relations to improve the topic coverage
of predicted keyphrases.

Recently, hyperbolic representation methods [27,26] have been developed
to model the latent hierarchical nature of data and demonstrated encourag-
ing results. To efficiently utilize hyperbolic embeddings in downstream tasks,
researchers have proposed some advanced hyperbolic deep networks, such as
hyperbolic neural networks [12] and hyperbolic attention network [15].

Motivated by the above observations, we propose a hyperbolic seq2seq net-
work for keyphrase generation, which is a novel keyphrase generation framework
for modeling hierarchical relations. Specifically, we design a hyperbolic encoder
to compress the hierarchical semantic information discussed in a target docu-
ment into a hyperbolic embedding, and devise a hyperbolic decoder to generate
corresponding keyphrases. In the hyperbolic network, we propose an innova-
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Fig. 1. Ideal semantic hierarchical relations among candidate keyphrases (cp) within
a document, in which the dotted line semantically represents a topic segmentation and
facilitates understanding of hierarchical structures of topics.

tive hyperbolic hierarchy-aware attention mechanism to enhance the ability to
learn semantic hierarchical relations, which can selectively focus on the words
with high-level semantics. Different from Euclidean deep generation methods,
our proposed hyperbolic hierarchy-aware attention mechanism make our model
more effective to capture the semantic hierarchical relations within a target doc-
ument and thus generate keyphrases based on its semantic understanding with
good topic coverage and accuracy. In addition, we propose a new metric to mea-
sure the degree to which the predicted keyphrases cover the main topics of a
target document. To the best of our knowledge, this is the first work to design
a new hyperbolic network for keyphrase generation.

2 Related Work

2.1 Keyphrase Generation

Following CopyRNN [23], several extensions have been proposed to boost its gen-
eration ability. For instance, Ye et al. [36] propose a semi-supervised keyphrase
generation model that utilizes both abundant unlabeled data and limited la-
beled data. Chen et al. [9] propose a title-guided network to sufficiently utilize
the already summarized information in given title. In addition, some researches
attempted to leverage external knowledge to help reducing duplication and im-
proving coverage, such as syntactic constraints [41] and latent topics [34].

The above-mentioned methods, which utilize the standard seq2seq network,
can not generate multiple keyphrases and determine the appropriate number of
keyphrases at a time for a target document. To overcome this shortcoming, Yuan
et al. [38] introduce the new training and inference setup in the seq2seq network
to generate multiple keyphrases and decide on the suitable number of keyphrases
for a given document. Ye et al., [37] propose a One2Set paradigm to predict the
keyphrases as a set, which eliminates the bias caused by the predefined order
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in One2Seq paradigm [38]. In addition, some recent works focus on improving
the decoding process of seq2seq networks. For example, Chen et al., [8] propose
an exclusive hierarchical decoding framework and use either a soft or a hard
exclusion mechanism to reduce duplicated keyphrases. More recently, Ahmad et
al. [1] design an extractor-generator to jointly extract and generate keyphrases
from a document. We observe that almost all existing keyphrase generation
methods used the Euclidean seq2seq framework, which cannot provide the most
powerful representations for hierarchical structures on keyphrase generation task.

2.2 Hyperbolic Representation

An increasing number of research has shown that many types of complex data
exhibit non-Euclidean structures [3]. Recently, hyperbolic embedding methods
have been proposed to learn the latent representation of hierarchical data and
demonstrated encouraging results. In the field of NLP, hyperbolic representa-
tion learning has been successfully applied to generating word embeddings [31]
and sentence representations [10], and inferring concept hierarchies from large
text corpora [20]. In addition, hyperbolic geometry has been integrated into re-
cent advanced hyperbolic deep learning frameworks, such as hyperbolic neural
networks [12], and hyperbolic attention network [15].

3 Preliminaries

Hyperbolic space Hyperbolic space, specifically referring to a simply con-
nected manifolds with constant negative curvature [2], can be thought of as a
continuous analogue of tree and is more suitable for learning data with hierarchi-
cal structures. The hyperbolic space can be constructed using various isomorphic
models (i.e., these models can be converted into each other). In this paper, we
follow the majority of NLP works and employ the Poincaré ball model with the
curvature set as -1, whose distance function is differentiable.

Poincaré ball model The n-dimensional Poincaré ball model Pn=(Bn, gP) is
defined by a Riemannian manifold Bn={x∈Rn | ‖x‖<1} with the metric tensor
gP(x)=( 2

1−‖x‖2 )2gE , where ‖ · ‖ denotes the Euclidean norm, and gE=In is the

Euclidean metric tensor. The induced distance between two points x,y∈Pn is
defined as

dP(x,y)=cosh−1
(

1+
2‖x− y‖2

(1− ‖x‖2)(1− ‖y‖2)

)
, (1)

where cosh−1(x) = ln(x +
√

x2 − 1) is an inverse hyperbolic cosine function.
The induced distance can place root node near the center of the ball and

leaf nodes near the boundary of the ball to ensure that the distance from the
root node to each of leaf nodes is relatively small while the distance between
leaf nodes is relatively large. This explains why hyperbolic space can be seen as
a tree-like hierarchical structure.
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Klein model To define the hyperbolic average, we employ the Klein model of
hyperbolic space. The n-dimensional Klein model Kn=(Bn, gK) is also defined in
a manifold Bn with the different metric tensor gK. The Poincaré model and Klein
model describe the same hyperbolic space using different coordinates. Thus,
these two models can be converted into each other. Given a point xP ∈ Pn in

the Poincaré ball model, we convert it to the Klein model by xK = 2xP

1+‖xP‖2 .

Similarly, a point xK ∈Kn in Klein model can be converted into Poincaré ball

model as xP = xK

1+
√

1−‖xK‖2
.

Hyperbolic operations To make neural networks work in hyperbolic space,
Möbius operations including Möbius addition and Möbius matrix-vector multi-
plication in the Poincaré ball are used. In addition, the exponential map (which
maps a Euclidean vector to the hyperbolic space) and the inverse logarithm map
are also used. The details of these operations can be seen in the work [12].

4 Methodology

4.1 Problem Definition

Let x = (x1, . . . , xT ) be a document that is treated as a sequence of words,
where T is the length of x. The goal of a keyphrase generation method is to find

a model to generate a set of keyphrases K = {pk}|K|k=1 for document x, where
each keyphrase pk=(y1, ..., y|pk|) is also a sequence of words.

To generate multiple keyphrases for an input document, existing approaches
provide two different data formats as the predicted keyphrase output (i.e., two
training paradigms): One2One [23] and One2Seq [38]. One2One only predicts a
fixed number of keyphrases for all documents, where each training data sample is
a pair of source text and one of its keyphrases (x, p). To overcome this drawback,
One2Seq can generate a single sequence, which consists of multiple predicted
keyphrases and separators, as represented by K ′ = p1 <sep> p2... <sep> p|K|.
Each training data sample is a pair of source text and concatenated sequence of
its keyphrases and separators (x,K ′).

4.2 Hyperbolic Encoder-Decoder Model

The basic idea of our keyphrase generation model is to leverage a hyperbolic
deep network to compress the semantic information of the input document into
the low-dimensional representations using the hyperbolic encoder and to gener-
ate corresponding keyphrases using the hyperbolic decoder, based on the rep-
resentations. In this hyperbolic network, we propose a new hyperbolic attention
mechanism to capture the semantic subordination and select the words with
high-level semantics. In addition, a hyperbolic pointer mechanism is used to
copy certain out-of-vocabulary words from the input document and paste them
into the generated keyphrases. An overview of this method is shown in Fig.2.
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Fig. 2. The overview of the proposed hyperbolic deep model for keyphrase generation.

The encoder and decoder are implemented with a hyperbolic gated recur-
rent unit (HGRU) [12]. Let x = (x1, ..., xT ) be a sequence of words within an
input document, and x = [x1, ...,xT ] be its corresponding sequence of hyper-
bolic word embeddings. The encoder maps the input word sequence x into a set
of contextualized hidden representations h = [h1, ...,hT ], using a bidirectional
HGRU ht=[HGRUf(xt),HGRUb(xt)] where HGRUf(·) and HGRUb(·) are used
to learn the forward and backward hidden states around the input text, respec-
tively. HGRU based on Möbius operations in Poincaré model [12] is defined as

rt = σ(log0(Wr ⊗ ht−1 ⊕Ur ⊗ xt ⊕ br))

zt = σ(log0(Wz ⊗ ht−1 ⊕Uz ⊗ xt ⊕ bz))

h̃t = ϕ((Whdiag(rt))⊗ ht−1 ⊕Uh ⊗ xt ⊕ bh)

ht = ht−1 ⊕ diag(zt)⊗ (−ht−1 ⊕ h̃t)

(2)

where rt is a reset gate, and zt is a update gate. log0(·), ⊗ and ⊕ are defined
in subsection 3. σ(·) is a sigmoid function, and ϕ(·) is a pointwise non-linearity.
Since the hyperbolic space naturally has non-linearity, ϕ(·) is identity. diag(·) is
a square diagonal matrix. The six weights W∈Rn×n, U∈Rn×m are trainable
parameters in Euclidean space and three biases b∈Bn are trainable parameters
in hyperbolic space.

The decoder is another forward HGRU which is used to generate the sequence
of keyphrases by predicting the next word yt based on the hidden state st. Both
yt and st are conditioned on yt−1 and ct of the input sequence. Formally, the
hidden state st and decoding function can be written as

st = HGRUf(yt−1, st−1, ct), (3)

and
p(yt | y1, y2, ..., yt−1, c) = g(yt−1, st, ct), (4)



Hyperbolic Deep Keyphrase Generation 7

where g(·) is a nonlinear multi-layered function that outputs the probability of
yt. The more details of the decoder are given in the next subsections.

4.3 Hyperbolic Attention Mechanism

The attention mechanism is used to make the network model dynamically focus
on the important parts in input data, and consists of two core parts: match-
ing and aggregation. Particularly, the matching part computes attention weight
αtj = α(st,hj), which reflects the relevance of the hidden states hj of input se-
quence in the presence of the current hidden state st for deciding the next word
yt. The aggregation part, on the other hand, takes a weighted sum of hidden
states using these weights, also known as context vector ct.

A general hyperbolic attention mechanism was first introduced by Gulcehre
et al. [15] to build an attentive read operation in the Hyperboloid model. In-
spired by this work, we propose a new hyperbolic attention mechanism in the
Poincaré ball model specifically for the keyphrase generation task. In particu-
lar, in the matching part, the most natural way to compute attention weight
is to use the hyperbolic distance between points of matching pairs, given as

αtj =
exp(a(st,hj))∑T

k=1 exp(a(st,hk))
, where a(st,hj) is a soft alignment function that is used

to score how well the inputs around position j and the output at position t
match (i.e., to measure the relevance between st and hj), computed as

a(st,hj) = −βdP(st,hj)− db, (5)

where dP(·, ·) is the distance function in hyperbolic space, and db is a parameter
learned along with the rest of the network. Note that in the work [15], β is also
a learnable coefficient. This causes the attention mechanism to only utilize the
hyperbolic distance to measure the relevance between st and hj , and ignore the
distance between the center of the Poincaré ball to hj (i.e., the norm of hj),
which can reflect the semantic level of an input word at position j (i.e., hidden
state hj) in a tree-like hierarchical structure internalized by the hyperbolic space.

To overcome this drawback and further enhance the ability to capture the
high-level semantics, we redefine β as

β =
1

exp(−ϕ‖hj‖)
, (6)

where ϕ is a hyper parameter. Thus, the new hyperbolic attention mechanism
takes into account not only the semantic relevance between two words but also
the semantic hierarchy of each word in the semantic tree (as Fig.1 shows). We
name it as the hierarchy-aware attention mechanism.

In the aggregation part, the weighted sum of hidden states is computed by the

Einstein midpoint that is defined in Klein model as ct =
∑T
j=1

[
αtjγ(hj)∑T
l=1 αtlγ(hl)

]
hj ,

where γ(hj) = 1√
1−‖hj‖2

is a Lorentz factor.

Note that before aggregation process, we first transform the hidden states
from Poincaré Ball to Klein model, and transform it back to Poincaré ball model
after aggregation. The used formulas are given in subsection Klein model.
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4.4 Hyperbolic Pointing Mechanism

To recall some keyphrases which contain out-of-vocabulary words, CopyRNN
utilized the copying mechanism [14] to generate out-of-vocabulary words. Here,
we use the pointing mechanism (that is a modified copy mechanism) into the
Poincaré ball model for the same purpose.

Let V be a global vocabulary, Vs be a vocabulary of the source sentences,
and unk be any out-of-vocabulary word. It builds an extended vocabulary Ve =
V ∪ Vs ∪ {unk}. The distribution over Ve at current time step t is

p(yt) = pgt · pg(yt) + (1− pgt ) · pc(yt), (7)

where pgt is the probability of choosing generate-mode, calculated by

pgt = σ(log0(Wcg ⊗ dt ⊕ bcg)). (8)

The probability of generate-mode pg(·) and copy-mode pc(·) are given by

pg(yt) =

{
v>i log0(Wg ⊗ dt ⊕ bg), yt ∈ V∪{unk},
0, otherwise.

(9)

pc(yt) =


∑

j:xj=yt
αtj , yt ∈ Vs,

0, otherwise.
(10)

where vi is a one-hot indicator vector, W and b in Eq. (8) and Eq. (9) are train-
able parameters. Finally, we adopt the widely used cross entropy loss function
to train the models, both in One2One and One2Seq paradigms.

5 Experiments

5.1 Dataset

We employ KP20k dataset [23], where each example contains a title and an ab-
stract of a scientific paper as source text, and author-assigned keywords as target
keyphrases. Following previous works, we use the training dataset of KP20k to
train all the models, and use the validation dataset to validate the choice of
hyper parameters. In order to evaluate the proposed model comprehensively, we
also test on other four widely used public datasets from the scientific domain,
namely, Inspec [17], Krapivin [19], SemEval-2010 [18] and NUS [25]. The detailed
statistic information of these five datasets are summarized in the work [40].

5.2 Baselines

For the present keyphrase prediction, we compare our models with two types of
methods, including eight extraction and seven deep generation methods.
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Representative extraction methods consist of three different types: 1) statistic-
based unsupervised methods, including (1) TF-IDF and (2) YAKE! [4], 2)
graph-based unsupervised methods, including (3) TextRank [24], (4) SingleR-
ank [32], (5) PositionRank [11], (6) KPRank [28], and 3) traditional super-
vised methods, including (7) KEA [35] and (8) Maui [22]. Due to the limited
space, we select the best-performing method (BL∗) from each of the three types
of baselines with the best-performing metrics to compare with our method.

The supervised generation baselines can be classified into One2One and
One2Seq according to the training paradigm. The One2One baselines include: (1)
CopyRNN [23], which is the first to use seq2seq network to generate keyphrases,
(2) CorrRNN [6], which is an extension of CopyRNN integrating the sequential
decoding with coverage and review mechanisms, and (3) KG-KE-KR-M (ab-
breviated as KG-KE) [7], which is a multi-task learning using extraction and
generation models to generate keyphrases.

The One2Seq baselines include: (1) CatSeq [38], which has the same frame-
work as CopyRNN, with the key difference between them on the training paradigm,
(2) CatSeqTG-2RFl (abbreviated as Cat-2RFl) [5], which is an extension of
CatSeq using reinforcement learning to generate both sufficient and accurate
keyphrases, (3) ExHiRD-h [8], which uses an exclusive hierarchical decoder
to avoid generating duplicated keyphrases, and (4) SEG-Net [1], which jointly
extracts and generates keyphrases.

The proposed Hyperbolic Attentional Network (HyAN1) and its extensions
are: (1) HyAN, which is a basic hyperbolic attentional model trained by One2One
paradigm, corresponding to CopyRNN, (2) HyANh, which is an extension of
HyAN, in which only the semantic hierarchy is integrated into the hyperbolic
attention mechanism, (3) HyANS, which is also an extension of HyAN trained by
One2Seq paradigm, corresponding to CatSeq, and (4) HyANSh, which is a com-
posite of HyANS and HyANh, trained by One2Seq paradigm and incorporated
with the semantic hierarchy.

5.3 Evaluation Metrics

We adopt top-N macro-averaged F-measure (F1) and R@k as the evaluation
metrics, in which F1 includes F1@k, F1@O and F1@M. F1@k is used in almost
all existing works, while F1@O and F1@M proposed in [38] are designed specif-
ically for the One2Seq generation, where O is the number of author-provided
keyphrases and M is the number of all predicted keyphrases. They are capable
of reflecting the nature of variable number of keyphrases for each document. The
recall of the top 50 predictions (R@50) evaluates prediction of absent keyphrases.

5.4 Implementation Details

We follow the previous works [23,38] to pre-process the experimental data. The
top 50,000 most frequently-occurring words in the training data are used as the
vocabulary shared in the hyperbolic encoder and decoder.

1 The code of our model is available at https://github.com/SkyFishMoon/HyAN.

https://github.com/SkyFishMoon/HyAN
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Table 1. Results of predicting present keyphrases of different methods on five datasets.
Best/second-best performing score in each column is highlighted with bold/underline in
each of two trained paradigms, and best performing score in both trained paradigms is
highlighted with bold and asterisk. CopyRNN+ is re-implemented CopyRNN with best
results [38]. Sta-, Gra- and Tra- represent statistic-unsupervised, graph-unsupervised
and traditional supervised, respectively.

Method
Inspec Krapivin NUS SemEval KP20k

F1@5 F1@10 F1@5 F1@10 F1@5 F1@10 F1@5 F1@10 F1@5 F1@10

E
x
t.

Sta-BL∗ 20.4 24.4 21.5 19.6 15.9 19.6 15.1 21.2 14.1 14.6
Gra-BL∗ 27.7 32.3 17.7 18.5 21.0 22.3 22.5 25.7 18.1 15.0
Tra-BL∗ 10.9 12.9 24.3 20.8 24.9 26.1 4.50 3.90 26.5 22.7

O
n
e2

O
n
e CopyRNN+ 24.4 28.9 30.5 26.6 37.6 35.2 31.8 31.8 31.7 27.3

CorrRNN - - 31.8 27.8 35.8 33.0 32.0 32.0 - -
KG-KE 25.7 28.4 27.2 25.0 28.9 28.6 20.2 22.3 31.7 28.2
HyAN 27.9 29.8 32.2 27.9 38.1 34.7 32.8 32.3 32.9 28.5
HyANh 28.8 30.2 33.0 28.9 38.8 36.2 33.3∗ 32.5 34.0 29.3

F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

O
n
e2

S
eq

CatSeq 22.5 26.2 26.2 35.4 32.3 39.7 24.2 28.3 29.1 36.7
Cat-2RF1 25.3 30.1 30.0 36.9 37.5 43.3 28.7 32.9 32.1 38.6
ExHiRD-h 25.3 29.1 28.6 34.7 - - 28.4 33.5 31.1 37.4
SEG-Net 21.6 26.5 27.6 36.6 39.6 46.1 28.3 33.2 31.1 37.9
HyANS 30.0 33.0 33.9 36.1 40.2 46.5 33.0 34.7 33.9 38.9
HyANSh 30.8∗ 34.3 34.6∗ 36.9 40.7∗ 47.2 33.2 35.5 34.5∗ 39.5

The size of hyperbolic word embedding is set as m= 100 and the size of
hyperbolic hidden state is set as n=150. The word embeddings are initialized
first using normal distribution by the method [13], where the gain weight is set
as
√

2. Then the embedding is projected into the Poincaré ball by exp0(·). In
addition, db and ϕ are set as 1.0 and 230 in formula (5) and (6), respectively.

In the training process, we set the batch size as 32. The initial learning rate
is set as 0.0008. Early stopping is used when training. In the testing process, our
models trained by One2One paradigm use the beam search with a width of 120
and a max depth of 6. Finally our models trained by One2Seq paradigm employ
a beam width of 40 and a max depth of 40.

5.5 Results and Analysis

Present keyphrase prediction The results of predicting present keyphrases
are shown in Table 1. The results show that the generation methods substantially
outperform the traditional extraction methods across all the datasets. Among
the generation methods, the One2Seq methods can generally achieve better per-
formance than other One2One methods. This improvement may be driven by
the inter-relation among keyphrases of each document, which can be effectively
captured by the deep models trained by the One2Seq paradigm. In all methods,
HyANSh achieves the best results in term of all metrics on all datasets.
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Table 2. Results of predicting absent keyphrases of different methods on five datasets.

Method
Inspec Krapivin NUS SemEval KP20k

F1@5 R@50 F1@5 R@50 F1@5 R@50 F1@5 R@50 F1@5 R@50
O

2
O

CopyRNN+ 0.1 8.3 0.9 8.1 1.1 8.1 1.0 2.6 0.8 8.7
HyAN 0.3 8.5 1.1 8.5 1.3 8.5 1.2 2.8 1.2 8.9
HyANh 0.3 8.6 1.4 9.0 1.5 8.7 1.6 3.1 1.3 9.1

F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

O
n
e2

S
eq

CatSeq 0.4 0.8 1.8 3.6 1.6 2.8 1.6 2.8 1.5 3.2
Cat-2RF1 1.2 2.1 3.0 5.3 1.9 3.1 2.1 3.0 2.7 5.0
ExHiRD-h 1.1 2.2 2.2 4.3 - - 1.7 2.5 1.6 3.2
SEG-Net 1.5 0.9 3.6 1.8 3.6 2.1 3.0∗ 2.1 3.6 1.8
HyANS 1.8 2.7 3.9 6.1 4.0 4.8 2.5 2.9 3.9 4.2
HyANSh 2.3∗ 3.1 4.3∗ 7.1 5.2∗ 5.1 3.0∗ 3.3 4.6∗ 5.3

In all the deep models whether trained by the One2One or One2Seq paradigm,
the proposed hyperbolic models outperform the corresponding Euclidean base-
lines across all the datasets. It should be noted that HyAN can be regarded
as CopyRNN and HyANS as CatSeq in hyperbolic space, and they do not use
any side information or multi-task learning to achieve better performance like
almost all extensions of CoypRNN in Euclidean space, so it is only fair to com-
pare HyAN with CopyRNN, and HyANS with CatSeq. The results show that
HyAN and HyANS outperform CopyRNN and CatSeq on all datasets, respec-
tively. This demonstrates the superiority of the hyperbolic methods in modeling
hierarchical structures for keyphrase prediction.

Absent keyphrase prediction Unlike present keyphrases, absent keyphrases
do not appear in the target document, and thus predicting them is very chal-
lenging and requires understanding the latent document semantic. The results
are presented in Table 2 (where O2O represents One2One paradigm), where
recall R@50 is more suitable for evaluating the performance of One2One meth-
ods in absent keyphrase prediction (more detailed descriptions are shown in the
work [23]). The results indicate no matter which type of model is trained by
One2One or One2Seq paradigm, the proposed hyperbolic models can predict
absent keyphrases more accurately than the corresponding Euclidean baselines.

Variable-number keyphrase generation The One2Seq methods can predict
a varying number of keyphrases conditioned on the given document, which is one
key advantage of this type of method. We conduct experiments on the KP20k
dataset to compare the performance of models for generating a varying number
of keyphrases in term of both F1@O and F1@M. The results are presented in
Table 3. As the results show, HyANS and HyANSh substantially outperform
CatSeq, and HyANSh achieves the best results in terms of two performance
metrics. This indicates that our proposed hierarchy-aware attention mechanism



12 Y. Zhang and T. Yang et al.

Table 3. Results of the variable-number keyphrase generation on kp20k dataset.

KP20k F1@O F1@M
CatSeq 24.3 25.1
HyANS 31.0 32.5
HyANSh 31.5 32.8

used in HyANSh is more effective than the primitive hyperbolic attention mech-
anism [15] used in HyANS.

5.6 Coverage Evaluation of Predicted Keyphrases

As mentioned in the works [21,39], the predicted keyphrases should cover all
the main topics discussed in the target document. However, it is challenging
to evaluate the degree to which the predicted keyphrases cover the main top-
ics of a target document. To this end, we try to find the ground-truth (i.e.,
author-provided) keyphrases that are not covered semantically by the predicted
keyphrases and use the number of them to measure the semantic coverage of
predicted keyphrases for a target document.

Specifically, let G= {gi}ni=1 be a set of ground-truth keyphrases of a target
document, and K= {pj}mj=1 be its corresponding set of predicted keyphrases.
The number of un-covered ground-truth keyphrases (uck) is defined as

uck =

n∑
i=1

1
( m∑
j=1

1
(
sij = max

k=1:n
{skj}

)
= 0
)
, (11)

where sij is the cosine similarity between embeddings of ground-truth keyphrase
gi and predicted keyphrase pj , produced by the pre-trained BERT2. The indi-
cator function 1(·) outputs 1 if the expression evaluates to true and outputs 0
otherwise. This formula is used to count the number of ground-truth keyphrases,
each of which has lower similarities with all the predicted keyphrases. A smaller
the value of uck suggests a better predictor.

As the results shown in Table 4, our hyperbolic deep models indeed outper-
form the other two Euclidean models, and HyANSh gets the best result. The
results indicate the predicted keyphrases generated by our hyperbolic models
can better cover the topics discussed in a target document and reduce dupli-
cated keyphrases generation.

Table 4. Average number of uncovered author-provided keyphrases (i.e., average uck)
of different methods on KP20k dataset.

CopyRNN+ HyAN HyANh CatSeq Cat-2RF1 ExHiRD-h HyANS HyANSh

1.7784 1.7602 1.7385 1.7729 1.7653 1.7542 1.7334 1.7328

2 https://github.com/duanzhihua/pytorch-pretrained-BERT

https://github.com/duanzhihua/pytorch-pretrained-BERT
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Table 5. Two examples of generated keyphrases by different methods with the One2Seq
training paradigm. Author-assigned (i.e., Gold) keyphrases are shown in bold, and
absent keyphrases are labeled by *.

Example 1
Title: Active Learning for Software Defect Prediction (#4445 in KP20k)
Abstract: An active learning method, called Two-stage Active learning algorithm
(TAL), is developed for software defect prediction. Combining the clustering and
support vector machine techniques, this method improves the performance of
the predictor with less labeling effort. Experiments validate its effectiveness.
Gold: machine learning*; defect prediction; active learning; support vector
machine

HyANSh: machine learning*; active learning; support vector machine;
support vector machines

Catseq: active learning; software defect prediction; clustering; support vec-
tor machine; software defect prediction

Cat-2RF1: active learning; software defect prediction; clustering; support
vector machine; software metrics

ExHiRD-h: active learning; software defect prediction; clustering; support
vector machine

Example 2
Title: Experience with performance testing of software systems issues, an approach,
and case study (#4086 in KP20k)
Gold: performance testing; software performance testing; program test-
ing*; software testing*

HyANSh: performance testing; software performance testing; software
testing*

Catseq: performance testing; software performance testing; software
testing*

Cat-2RF1: performance testing; software systems; case study; software
testing*

ExHiRD-h: performance testing; software systems; case study; software
testing*; performance evaluation

5.7 Case Study and Visualization

Here, we select two anecdotal examples of research papers shown in Table 5.
The predictions generated by different methods along with human-picked “gold”
keyphrases are listed in this table. The first paper (i.e., Example 1) presented
an active learning method for software defect prediction and assigned “machine
learning” as a absent keyphrase, which appears in the first position of the author-
assigned keyphrase sequence. Obviously, the keyphrase “machine learning” can
be regarded as the root topic description of various machine learning methods,
such as active learning discussed in this example. As can be seen from Table
5, our hyperbolic HyANSh is capable of understanding the underlying semantic
hierarchical structures in this document, and thus can accurately generate this
absent root keyphrase while all the baselines in Euclidean space fail to generate
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Fig. 3. Attention visualization of hyperbolic HyANSh (top) and Euclidean Catseq
(bottom) on the second example. Deeper shading denotes higher value.

it. This example further indicates that hyperbolic space may help to gain better
performance in keyphrase generation.

The second paper (i.e., Example 2) proposed an approach to software per-
formance testing. Comparing with the baseline methods, HyANSh and Catseq
achieve best performance and generate the same keyphrases on this example.
Fig.3 visualizes the proposed hyperbolic hierarchy-aware attention in HyANSh
and the Euclidean attention in Catseq to further clarify how our model works.
Due to space limitation, we only visualize the first present keyphrase “per-
formance testing” and the absent keyphrase “software testing” in the author-
assigned keyphrase sequence, and they are already enough to support our analy-
sis. Although these two keyphreses are correctly generated by both HyANSh and
Catseq, from the results shown in Fig.3, we can clearly see that HyANSh pays
more attention to relevant content words such as “performance” and “testing”
while Catseq, to a certain extent, focuses on some irrelevant or functional words
such as “is” and “of”. This example indicates that compared with the Euclidean
space, the hyperbolic space is very helpful for generating keyphrases.

6 Conclusion

In this study, we presented a new solution that aims to predict keyphrases using
hyperbolic encoder-decoder framework, which can effectively capture the under-
lying semantic hierarchical structures discussed in a target document. To the
best of our knowledge, this is the first study to explore a hyperbolic deep net-
work for keyphrase generation. In addition, we propose a novel hierarchy-aware
attention mechanism to further enhance the ability to capture the semantic hi-
erarchical information, and a new metric to measure the degree to which the
predicted keyphrases cover the main topics of a target document. Comprehen-
sive experimental results show the proposed hyperbolic models outperform the
state-of-the-art Euclidean models across all five datasets. In future, we plan to
evaluate the proposed hyperbolic seq2seq model on a large corpus with compre-
hensive coverage of diverse topics.
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